已知函數(shù).
(Ⅰ)若,求
的取值范圍;
(Ⅱ)證明:.
(Ⅰ), ………………2分
xf′(x)=xlnx+1,
題設(shè)xf′(x)≤x2+ax+1等價于lnx-x≤a,
令g(x)=lnx-x,則g’(x)=。 ………………4分
當0<x<1時,g’(x)>0;當x≥1時,g’(x)≤0,x=1是g(x)的最大值點,
g(x)≤g(1)=-1。 ………………6分
綜上,a的取值范圍是[-1,+∞)。 ………………7分
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1,即lnx-x+1≤0;
當0<x<1時,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0; ………10分
當x≥1時,f(x)=lnx+(xlnx-x+1)
=lnx+x(lnx+-1)≥0
所以(x-1)f(x)≥0
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù).
(1)若,求
的值;
(2)若對于
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省海林市高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)若曲線與曲線
在它們的交點(1,c)處具有公共切線,求
,
的值;
(2)當,
時,若函數(shù)
在區(qū)間[
,2]上的最大值為28,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)
已知函數(shù),
(1)若在
上的最大值為
,求實數(shù)
的值;
(2)若對任意,都有
恒成立,求實數(shù)
的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù)
,曲線
上是否存在兩點
,使得
是以
(
為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com