日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)等比數(shù)列的首項為,公比為為正整數(shù)),且滿足的等差中項;數(shù)列滿足).

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)試確定的值,使得數(shù)列為等差數(shù)列;

          (Ⅲ)當為等差數(shù)列時,對每個正整數(shù),在之間插入個2,得到一個新數(shù)列. 設(shè)是數(shù)列 的前項和,試求滿足的所有正整數(shù).

           

          【答案】

          (Ⅰ);(Ⅱ)時,數(shù)列為等差數(shù)列;(Ⅲ)

          【解析】

          試題分析:(Ⅰ)根據(jù)題意的等差中項,由等差中項不難得出三者的關(guān)系,又由為等比數(shù)列,回歸基本量即可求出公比的值,就可求出的通項公式; (Ⅱ)由數(shù)列滿足,可化簡求得的表達式,即,由(Ⅱ)中所給條件為等差數(shù)列,可想到它的前三項一定符合等差數(shù)列的要求,即滿足,可求出的值,這樣得到的表達式,通過等差數(shù)列的定義對所求表達式進行驗證,得出是一個等差數(shù)列; (Ⅲ)由題目在之間插入個2,即之間插入2k個2,這樣不難發(fā)現(xiàn)這個數(shù)列的前三項均為2,這顯然成立,推到一般情形去證明當時,等式左邊,右邊,化簡得,可根據(jù)特點可令函數(shù),可對其求導(dǎo)進行分析函數(shù)的單調(diào)性情況,發(fā)現(xiàn)最小值成立,從而就可得出符合題意的值.

          試題解析:解:(Ⅰ)因為,所以,

          解得(舍),則        3分

          ,所以           5分

          (Ⅱ)由,得,

          所以,

          則由,得          8分

          而當時,,由(常數(shù))知此時數(shù)列為等差數(shù)列    10分

          (Ⅲ)因為,易知不合題意,適合題意    11分

          時,若后添入的數(shù)2,則一定不適合題意,從而必是數(shù)列中的

          某一項,則,

          所以,即      13分

          ,則

          因為,

          所以當時,,又

          從而,故在[3,遞增.

          則由=0在[3,無解,

          都不合題意  15分

          綜上知,滿足題意的正整數(shù)僅有m=2           16分

          考點:1.等比數(shù)列的通項;2.等差數(shù)列的定義;3.函數(shù)的性質(zhì)

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)已知數(shù)列

          定義其倒均數(shù)是。

             (1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項公式;

             (2)設(shè)等比數(shù)列的首項為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使得當恒成立,試找出一個這樣的k值(只需找出一個即可,不必證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011屆福建省廈門外國語學(xué)校高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:解答題

          (本小題滿分13分)已知數(shù)列,定義其倒均數(shù)是。
          (1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項公式;
          (2)設(shè)等比數(shù)列的首項為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使恒成立,試求k的最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三第一學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)等比數(shù)列的首項為,公比為為正整數(shù)),且滿足的等差中項;數(shù)列滿足).

          (1)求數(shù)列的通項公式;

          (2)試確定的值,使得數(shù)列為等差數(shù)列;

          (3)當為等差數(shù)列時,對每個正整數(shù),在之間插入個2,得到一個新數(shù)列. 設(shè)是數(shù)列 的前項和,試求滿足的所有正整數(shù).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期第一次綜合練習(xí)文科數(shù)學(xué) 題型:解答題

          (本題滿分14分)設(shè)等比數(shù)列的首項為,公比,前項和為

          (Ⅰ)當時,三數(shù)成等差數(shù)列,求數(shù)列的通項公式;

          (Ⅱ)對任意正整數(shù),命題甲: 三數(shù)構(gòu)成等差數(shù)列.

          命題乙: 三數(shù)構(gòu)成等差數(shù)列.

          求證:對于同一個正整數(shù),命題甲與命題乙不能同時為真命題.

           

          查看答案和解析>>

          同步練習(xí)冊答案