日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC中,角A、B、C的對邊分別為a、b、c,AH為BC邊上的高.以下結(jié)論:

          ·(+)=·;②·=;

          ·=csinB;④·(-)=b2-c2-2bccosA.其中正確的是_______________.(寫出所有你認為正確的結(jié)論的序號)

          ①②③

          解:由AH是BC邊上高,故·=0.

          故①正確.

          ·-=·(-)=·=0,

          故②正確.

          是單位向量且∠AHC=90°,

          即cos∠HAC=sinC,

          ·=||·1·cos∠HAC=bsinC.

          由正弦定理得bsinC=csinB.

          故③正確.

          ·(-)=·=a2=b2-c2-2bccosA與余弦定理矛盾.故④錯誤.


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,以下結(jié)論:①
          AH
          •(
          AC
          -
          AB
          )=0
          ;
          AB
          BC
          <0⇒△ABC
          為鈍角三角形;
          AC
          AH
          |
          AH
          |
          =csinB

          BC
          •(
          AC
          -
          AB
          )=a2
          ,其中正確的個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A、B、C的對邊分別是a、b、c,且滿足b+c=
          3
          a
          ,設(shè)
          m
          =[cos(
          π
          2
          +A),-1],
          n
          =(cosA-
          5
          4
          ,-sinA),
          m
          n
          ,試求角B的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A,B,C的對邊分別為a,b,c.
          (1)證明:
          a+b
          2a+b
          c
          a+c
          ;
          (2)證明:不論x取何值總有b2x2+(b2+c2-a2)x+c2>0;
          (3)若a>c≥2,證明:
          1
          a+c+1
          -
          1
          (c+1)(a+1)
          1
          6

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A、B、C所對的邊長分別為a,b,c且角A,B、C成等差數(shù)列,△ABC的面積S=
          b2-(a-c)2k
          ,則實數(shù)k的值為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A,B,C的對邊分別為a,b,c,a=
          2
          ,向量
          m
          =(-1,1)
          ,
          n
          =(cosBcosC,sinBsinC-
          2
          2
          )
          ,且
          m
          n

          (Ⅰ)求A的大;
          (Ⅱ)當sinB+cos(
          12
          -C)
          取得最大值時,求角B的大小和△ABC的面積.

          查看答案和解析>>

          同步練習冊答案