日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本題有(1)、(2)、(3)三個選考題,請考生任選2題作答,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換曲線x2+4xy+2y2=1在二階矩陣的作用下變換為曲線x2-2y2=1,求M的逆矩陣M-1=   
          (2)選修4-4:坐標系與參數(shù)方程在曲線C1(θ為參數(shù)),在曲線C1求一點,使它到直線C2(t為參數(shù))的距離最小,最小距離   
          (3)選修4-5:不等式選講設函數(shù)f(x)=.試求a的取值范圍   
          【答案】分析:(1)由detM==1,能求出M-1
          (2)將直線的參數(shù)方程化為普通方程,曲線C1任意點P的坐標為(1+cosθ,sinθ),利用點到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),與分母約分化簡后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進而得到距離d的最小值,并求出此時θ的度數(shù),即可確定出所求點P的坐標.
          (3)由f(x)=,知|x+1|+|x-2|+a≥0,由此能求出a的取值范圍.
          解答:解:(1)∵detM==1,
          ∴M-1==
          故答案為:
          (2)將直線C2化為普通方程得:x+y-1+2=0,
          設所求的點為P(1+cosθ,sinθ),
          則P到直線C2的距離d=
          =|sin(θ+)+2|,
          當θ+=,即θ=時,sin(θ+)=-1,d取得最小值1,
          此時點P的坐標為(1-,-).
          故答案為:1.
          (3)∵f(x)=
          ∴|x+1|+|x-2|+a≥0,
          ∵|x+1|+|x-2|≥3,
          ∴a≥-3.
          故答案為:{a|a≥-3}.
          點評:第(1)題考查矩陣與變換的應用,第(2)題考查坐標系與參數(shù)方程的應用,第(3)題考查不等式的應用,解題時要認真審題,注意等價轉化思想的合理運用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,請考生任選2題作答.
          (1)選修4-2:矩陣與變換
          已知a,b∈R,若M=
          -1a
          b3
          所對應的變換TM把直線L:2x-y=3變換為自身,求實數(shù)a,b,并求M的逆矩陣.
          (2)選修4-4:坐標系與參數(shù)方程
          已知直線l的參數(shù)方程:
          x=t
          y=1+2t
          (t為參數(shù))和圓C的極坐標方程:ρ=2
          2
          sin(θ+
          π
          4
          )

          ①將直線l的參數(shù)方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
          ②判斷直線l和圓C的位置關系.
          (3)選修4-5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (1).選修4-2:矩陣與變換
          已知矩陣A=
          1a
          -1b
          ,A的一個特征值λ=2,其對應的特征向量是α1=
          2
          1

          (Ⅰ)求矩陣A;
          (Ⅱ)若向量β=
          7
          4
          ,計算A2β的值.

          (2).選修4-4:坐標系與參數(shù)方程
          已知橢圓C的極坐標方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
          (3).選修4-5:不等式選講
          已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標系與參數(shù)方程
          已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點Q極坐標為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標方程;
          (Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
          (3)選修4-5:不等式選講
          (I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (Ⅰ)選修4-2:矩陣與變換,
          已知矩陣A=
          01
          a0
          ,矩陣B=
          02
          b0
          ,直線l1
          :x-y+4=0經矩陣A所對應的變換得直線l2,直線l2又經矩陣B所對應的變換得到直線l3:x+y+4=0,求直線l2的方程.
          (Ⅱ)選修4-4:坐標系與參數(shù)方程,
          求直線
          x=-2+2t
          y=-2t
          被曲線
          x=1+4cosθ
          y=-1+4sinθ
          截得的弦長.
          (Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分
          (1)已知矩陣M=
          12
          21
          ,β=
          1
          7
          ,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對應的特征向量;(Ⅲ)計算M100β.
          (2)曲線C的極坐標方程是ρ=1+cosθ,點A的極坐標是(2,0),求曲線C在它所在的平面內繞點A旋轉一周而形成的圖形的周長.
          (3)已知a>0,求證:
          a2+
          1
          a2
          -
          2
          ≥a+
          1
          a
          -2

          查看答案和解析>>

          同步練習冊答案