日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列的前n項(xiàng)和為,已知,

          1)求數(shù)列的通項(xiàng)公式;

          2)若,數(shù)列的前n項(xiàng)和為,,證明:.

           

          【答案】

          1;(2)證明過(guò)程詳見(jiàn)解析.

          【解析】

          試題分析:本題主要考查等比數(shù)列的通項(xiàng)公式、配湊法求通項(xiàng)公式、錯(cuò)位相減法求和等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),已知條件中只有一個(gè)等式,利用,用代替式子中的,得到一個(gè)新的表達(dá)式,兩個(gè)式子相減得到,再用配湊法,湊出等比數(shù)列,求出數(shù)列的通項(xiàng)公式;第二問(wèn),利用第一問(wèn)的結(jié)論,先化簡(jiǎn)表達(dá)式,再利用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,最后的結(jié)果與2比較大小.

          試題解析:,當(dāng)時(shí)

          2

           即   

              

            即         6

             8

           

          12

          考點(diǎn):1 ;2 配湊法求通項(xiàng)公式;3 等比數(shù)列的通項(xiàng)公式;4 錯(cuò)位相減法

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          ,
          1
          a2
          1
          a4
          成等比數(shù)列.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
          (Ⅱ)記An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,Bn=
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n-1
          ,當(dāng)n≥2時(shí),試比較An與Bn的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知等差數(shù)列{an}的首項(xiàng)為a(a∈R,a≠0).設(shè)數(shù)列的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n都有
          a2n
          an
          =
          4n-1
          2n-1

          (1)求數(shù)列{an}的通項(xiàng)公式及Sn;
          (2)是否存在正整數(shù)n和k,使得Sn,Sn+1,Sn+k成等比數(shù)列?若存在,求出n和k的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)為4,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          ,
          1
          a2
          1
          a4
          成等比數(shù)列.
          (1)求數(shù)列{an}的通項(xiàng)公式an及Sn;
          (2)記An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,Bn=
          1
          a1
          +
          1
          a2
          +
          1
          a22
          +…+
          1
          a2n-1
          ,當(dāng)n≥2時(shí),試比較An與Bn的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=a,a∈N*,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          1
          a2
          ,
          1
          a4
          成等比數(shù)列.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,若A2011=
          2011
          2012
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆廣西省桂林中學(xué)高三11月月考數(shù)學(xué)文卷 題型:解答題

          (本小題滿分12分)設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;
          (Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案