日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ex•(ax2-2x-2),a∈R且a≠0,當a>0時,求函數(shù)f(|cosx|)的最大值和最小值.
          【答案】分析:欲求函數(shù)f(|cosx|)的最大值和最小值,利用導數(shù)研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點處的函數(shù)值的大小,最后確定出最大值最小值.
          解答:解:f′(x)=(ex)′•(ax2-2x-2)+ex•(ax2-2x-2)′
          =ex•(ax2-2x-2)+ex•(2ax-2)
          =.((3分))
          設|cosx|=t(0≤t≤1),只需求函數(shù)y=f(t)(0≤t≤1)的最大值和最小值.(7分)
          令f′(x)=0,解得或x=-2.
          ∵a>0,∴
          當x變化時,f′(x)與f(x)的變化情況如下表:

          函數(shù)f(x)在(-∞,-2)和上單調(diào)遞增;在上單調(diào)遞減;(9分)
          ,即0<a≤2時,函數(shù)f(t)在[0,1]上為減函數(shù).ymin=f(1)=(a-4)e,ymax=f(0)=-2.
          ,即a>2時,函數(shù)f(x)的極小值為[0,1]上的最小值,

          函數(shù)f(t)在[0,1]上的最大值為f(0)與f(1)中的較大者.
          ∵f(0)=-2,f(1)=(a-4)e.
          ∴當時,f(1)>f(0),此時ymax=f(1)=(a-4)e;
          時,f(1)=f(0),此時ymax=f(0)=f(1)=-2;
          時,f(1)<f(0),此時ymax=f(0)=-2.(12分)
          綜上,當0<a≤2時,f(|cosx|)的最小值為(a-4)e,最大值為-2;
          時,f(|cosx|)的最小值為,最大值為-2;
          時,f(|cosx|)的最小值為,最大值為(a-4)e.(13分)
          點評:本小題主要考查利用導數(shù)求閉區(qū)間上函數(shù)的最值、利用導數(shù)研究曲線單調(diào)性等基礎知識,考查運算求解能力和分類討論思想.屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
          1
          x
          |,則函數(shù)y=f(x+1)的大致圖象為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
          (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=e-x(x2+x+1).
          (Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
          (Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

          查看答案和解析>>

          同步練習冊答案