日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)數(shù)學(xué)公式為奇函數(shù),f(1)=-3,且對(duì)任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立.
          (1)求b的值;
          (2)求證f(2)=0,并求f(x)解析式;
          (3)若對(duì)任意t∈(1,2],恒有f(tm)+f(-m-1-t2)<0,求正數(shù)m的取值范圍.

          解:(1)∵f(x)是奇函數(shù),
          ∴f(-x)=-f(x)恒成立,即恒成立,
          可得b=0
          (2)∵π≤x≤2π,
          ∴-1≤sinx≤0,-1≤cosx≤1,
          ∴-2≤sinx-1≤-1,2≤cosx+3≤4
          又∵f(sinx-1)≥0,f(cosx+3)≥0恒成立,
          ∴f(-2)≥0且f(2)≥0,
          ∵f(x)是奇函數(shù),
          ∴由f(-2)≥0可得f(2)≤0,
          ∴f(2)=0
          ∴由,及,得c=-4,a=1,

          (3)∵f(x)是奇函數(shù)得f(tm)<f(t2+m+1),
          又∵在(0,+∞)是增函數(shù),m>0,t>0,
          ∴tm>0,m+1+t2>0∴tm<t2+m+1,∴(t-1)m<t2+1,
          ∵t∈(1,2]∴t-1>0,
          在t∈(1,2]上恒成立
          設(shè)k=t-1,則k∈(0,1]且t2+1=k2++2k+2,設(shè)
          則g(k)在k∈(0,1]上單調(diào)遞減,
          ∴g(k)min=g(1)=5,∴m<5,
          又m>0,所以0<m<5
          分析:(1)根據(jù)函數(shù)的性質(zhì),我們易根據(jù)f(-x)=-f(x)恒成立,構(gòu)造方程,解方程即可求出求b的值;
          (2)由對(duì)任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立我們可得f(-2)≥0且f(2)≥0結(jié)合奇函數(shù)的性質(zhì),即可得到f(2)=0,結(jié)合已知中f(1)=-3,構(gòu)造方程組,解方程組即可得到f(x)解析式;
          (3)根據(jù)(2)中的解析式,我們易判斷在(0,+∞)是增函數(shù),根據(jù)奇函數(shù)的性質(zhì),我們可將不等式f(tm)+f(-m-1-t2)<0恒成立,轉(zhuǎn)化為一個(gè)函數(shù)恒成立問(wèn)題,進(jìn)而得到正數(shù)m的取值范圍.
          點(diǎn)評(píng):本題的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)的單調(diào)性及奇偶性的綜合應(yīng)用,其中根據(jù)已知利用方程和函數(shù)的思想,求出函數(shù)的解析式是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:解答題

          已知函數(shù)為奇函數(shù).
          (Ⅰ)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
          (Ⅱ)解關(guān)于x的不等式f(1+2x2)+f(﹣x2+2x﹣4)>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省泰安市新泰市新汶中學(xué)高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)為奇函數(shù),f(1)<f(3),且不等式的解集是[-2,-1]∪[2,4]
          (1)求a,b,c.
          (2)是否存在實(shí)數(shù)m使不等式對(duì)一切θ∈R成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省泰安市新泰市新汶中學(xué)高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)為奇函數(shù),f(1)<f(3),且不等式的解集是[-2,-1]∪[2,4]
          (1)求a,b,c.
          (2)是否存在實(shí)數(shù)m使不等式對(duì)一切θ∈R成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省哈爾濱市哈九中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)為奇函數(shù),f(1)=-3,且對(duì)任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立.
          (1)求b的值;
          (2)求證f(2)=0,并求f(x)解析式;
          (3)若對(duì)任意t∈(1,2],恒有f(tm)+f(-m-1-t2)<0,求正數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案