日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          將邊長為2,一個內角為的菱形沿較短對角線折成四面體,點
           分別為的中點,則下列命題中正確的是                   。
          ;②;③有最大值,無最小值;
          ④當四面體的體積最大時,; ⑤垂直于截面.
          ②④⑤
          解:因為將邊長為2,一個內角為的菱形沿較短對角線折成四面體,點 分別為的中點,則可知,當四面體的體積最大時,垂直于截面成立。
          練習冊系列答案
          相關習題

          科目:高中數學 來源:不詳 題型:解答題

          (本小題滿分12分)如圖,在中,上的高,沿折起,使 。
          (Ⅰ)證明:平面ADB  ⊥平面BDC;
          (Ⅱ)設E為BC的中點,求AE與DB夾角的余弦值。

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (本小題滿分14分)
          如圖:四棱錐PABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點FPB的中點,點E在邊BC上移動.

          (Ⅰ)點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
          (Ⅱ)證明:無論點E在BC邊的何處,都有PE⊥AF;
          (Ⅲ)當BE等于何值時,PA與平面PDE所成角的大小為45°                  

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,是直角三角形,,于點,平面,,
          (1)證明:;
          (2)求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:單選題

          ,,是空間三條不同的直線,則下列命題正確的是( 。
          A.,
          B.,
          C.,,共面
          D.,,共點,,共面

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (本小題8分)已知三棱錐A—BCD及其三視圖如圖所示.

          (1)求三棱錐A—BCD的體積與點D到平面ABC的距離;
          (2)求二面角 B-AC-D的正弦值.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:單選題

          下列條件能推出平面平面的是(    )
          A.存在一條直線
          B.存在一條直線
          C.存在兩條平行直線
          D.存在兩條異面直線

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          在四棱錐中,底面,,,,
          ,的中點.
          (1)  證明:
          (2)  證明:平面;
          (3)  求二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:單選題

          線段AB,CD在兩條異面直線上,M,N分別是AB,CD的中點,則一定有(   )
          A.B.
          C.D.

          查看答案和解析>>

          同步練習冊答案