日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          已知函數f(x)=-2x+1,對于任意正數?,使得|f(x1)-f(x2)|<?成立的一個充分但不必要條件是


          1. A.
            |x1-x2|<?
          2. B.
            |x1-x2|<數學公式
          3. C.
            |x1-x2|<數學公式
          4. D.
            |x1-x2|>數學公式
          C
          分析:函數f(x)=-2x+1,對于任意正數?,使得|f(x1)-f(x2)|<?成立,代入解析式,進行化簡整理,得出其等價條件,再對比四個選項,得出正確選項
          解答:∵函數f(x)=-2x+1,對于任意正數?,使得|f(x1)-f(x2)|<?成立
          ∴|2x1-2x2|<?
          ∴|x1-x2|<
          對照四個選項C選項符合題意
          故選C
          點評:本題考查充要條件,解題的關鍵是對題設中的條件進行整理得出它的充要條件,理解并能熟練運用充分條件必要條件定義是正確解答本題的知識保證.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數f(x)的最小正周期;
          (2)若函數y=f(2x+
          π
          4
          )
          的圖象關于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時f(x)的表達式;
          (2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
          1
          f(n)
          }
          的前n項和為Sn,則S2010的值為(  )
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
           

          查看答案和解析>>

          同步練習冊答案