日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心在x軸上,求圓C的方程.
          (2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.
          【答案】分析:(1)根據(jù)垂徑定理可得弦AB的垂直平分線必然過圓心,故利用線段中點坐標公式求出AB的中點坐標,由A和B的坐標求出直線AB的斜率,根據(jù)兩直線垂直時斜率的乘積為-1求出線段AB垂直平分線的斜率,由求出的斜率與AB的中點坐標得出線段AB的垂直平分線方程,又圓心在x軸上,令求出的直線方程中y=0,求出x的值,可確定出圓心C的坐標,再由A和C的坐標,利用兩點間的距離公式求出|AC|的長,即為圓C的半徑,由圓心和半徑寫出圓C的標準方程即可.
          (2)求出圓的圓心坐標,利用圓與直線相切,求出圓的半徑,即可得到圓的方程.
          解答:解:(1)∵A(5,1),B(1,3),
          ∴線段AB的中點坐標為(,),即(3,2),
          直線AB的斜率kAB==-
          ∴線段AB垂直平分線的方程為y-2=2(x-3),即y=2x-4,
          又圓心在x軸上,∴令y=0,得到2x-4=0,即x=2,
          ∴圓心C坐標為(2,0),
          ∴圓的半徑r=|AC|==,
          則圓C的方程為(x-2)2+y2=10. 
          (2)解:所求圓的圓心坐標為 (1,-2),
          因為直線與圓相切,所以圓的半徑為:=
          所以所求圓的方程為:(x-1)2+(y+2)2=5.
          點評:此題考查了圓的標準方程,涉及的知識有:線段的中點坐標公式,兩直線垂直時斜率滿足的關系,直線的點斜式方程,一次函數(shù)與坐標軸的交點,兩點間的距離公式,以及垂徑定理的運用,根據(jù)題意確定出圓心C的坐標是解本題的關鍵,考查直線與圓相切的關系的應用,圓的方程的求法,考查計算能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (1)已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心在x軸上,求圓C的方程.
          (2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (1)已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心在x軸上,求圓C的方程.
          (2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (1)已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心在x軸上,求圓C的方程.
          (2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年新疆克拉瑪依市克拉瑪依區(qū)實驗中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

          (1)已知圓C經(jīng)過A(5,1),B(1,3)兩點,圓心在x軸上,求圓C的方程.
          (2)求與圓x2+y2-2x+4y+1=0同心,且與直線2x-y+1=0相切的圓的方程.

          查看答案和解析>>

          同步練習冊答案