日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知t= (u>1),且關(guān)于t的不等式t2﹣8t+m+18<0有解,則實(shí)數(shù)m的取值范圍是(
          A.(﹣∞,﹣3)
          B.(﹣3,+∞)
          C.(3,+∞)
          D.(﹣∞,3)

          【答案】A
          【解析】解:∵u>1,∴u﹣1>0.
          ∴t= = =﹣[(u﹣1)+ ]+5≤ +5=3,當(dāng)且僅當(dāng)u=2時(shí)取等號(hào).
          ∴t∈(﹣∞,3].
          ∵不等式t2﹣8t+m+18<0,化為m<﹣t2+8t﹣18,
          ∴關(guān)于t的不等式t2﹣8t+m+18<0有解m<(﹣t2+8t﹣18)max
          令f(t)=﹣t2+8t﹣18=﹣(t﹣4)2﹣2≤f(3)=﹣3.
          因此m<﹣3.
          故選:A.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識(shí),掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知每種產(chǎn)品各生產(chǎn)1噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲產(chǎn)品可獲利潤(rùn)3萬(wàn)元,生產(chǎn)1噸乙產(chǎn)品可獲利4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為萬(wàn)元.

          原料限額

          A(噸)

          3

          2

          12

          B(噸)

          1

          2

          8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為(x﹣2)2+y2=1,點(diǎn)P在直線l:x+y+1=0上,若過(guò)點(diǎn)P存在直線m與圓C交于A,B兩點(diǎn),且點(diǎn)A為PB中點(diǎn),則點(diǎn)P的恒坐標(biāo)的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解關(guān)于x的不等式ax2﹣(2a+2)x+4>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若對(duì)于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,則實(shí)數(shù)t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an},{bn}分別滿足a1=1,|an+1﹣an|=2,且 |=2,其中n∈N* , 設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn , Tn
          (1)若數(shù)列{an},{bn}都是遞增數(shù)列,求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)若數(shù)列{cn}滿足:存在唯一的正整數(shù)k(k≥2),使得ck<ck﹣1 , 則稱(chēng)數(shù)列{cn}為“k墜點(diǎn)數(shù)列”. ①若數(shù)列{an}為“5墜點(diǎn)數(shù)列”,求Sn
          ②若數(shù)列{an}為“p墜點(diǎn)數(shù)列”,數(shù)列{bn}為“q墜點(diǎn)數(shù)列”,是否存在正整數(shù)m使得Sm+1=Tm?若存在,求出m的最大值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和為Sn滿足Sn+Sn2=2Sn1+2n1(n≥3,n∈N*)
          (1)試求數(shù)列{an}的通項(xiàng)公式
          (2)令bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和.證明:對(duì)任意給定的m∈(0, ),均存在n0∈N*,使得當(dāng)n≥n0時(shí),Tn>m恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C1:(x+2)2+(y﹣1)2=4與圓C2:(x﹣3)2+(y﹣4)2=4,過(guò)點(diǎn)P(﹣1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=﹣ (x+1)+5.
          (1)若k=2時(shí),設(shè)l1與圓C1交于A、B兩點(diǎn),求經(jīng)過(guò)A、B兩點(diǎn)面積最小的圓的方程.
          (2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長(zhǎng)與l2被圓C2截得的弦長(zhǎng)相等.
          (3)是否存在點(diǎn)Q,過(guò)Q的無(wú)數(shù)多對(duì)斜率之積為1的直線l3 , l4 , l3被圓C1截得的弦長(zhǎng)與l4被圓C2截得的弦長(zhǎng)相等.若存在求Q的坐標(biāo),若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列結(jié)論:
          ①在△ABC中,sinA>sinBa>b;
          ②常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列;
          ③數(shù)列{an}的通項(xiàng)公式為 ,若{an}為遞增數(shù)列,則k∈(﹣∞,2];
          ④△ABC的內(nèi)角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結(jié)論的個(gè)數(shù)為(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案