日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點,求a的取值范圍.
          【答案】分析:y=f(x)在區(qū)間[-1,1]上有零點轉(zhuǎn)化為(2x2-1)a=3-2x在[-1,1]上有解,把a用x表示出來,轉(zhuǎn)化為求函數(shù)在[-1,1]上的值域,再用分離常數(shù)法求函數(shù)在[-1,1]的值域即可.
          解答:解:a=0時,不符合題意,所以a≠0,
          又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,?(2x2-1)a=3-2x在[-1,1]上有解
          在[-1,1]上有解,問題轉(zhuǎn)化為求函數(shù)[-1,1]上的值域;
          設(shè)t=3-2x,x∈[-1,1],則2x=3-t,t∈[1,5],,
          設(shè),時,g'(t)<0,此函數(shù)g(t)單調(diào)遞減,
          時,g'(t)>0,此函數(shù)g(t)單調(diào)遞增,
          ∴y的取值范圍是
          ∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解??a≥1或
          故a≥1或a≤-
          點評:本題是一道中檔題,主要考查函數(shù)的零點及函數(shù)的零點存在性定理,函數(shù)的零點的研究就可轉(zhuǎn)化為相應方程根的問題,函數(shù)與方程的思想得到了很好的體現(xiàn).
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知a是實數(shù),函數(shù)f(x)=x2(x-a).
          (Ⅰ)若f′(1)=3,求a的值及曲線y=f(x)在點(1,f(1))處的切線方程;
          (Ⅱ)求f(x)在區(qū)間[0,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知a是實數(shù),函數(shù)f(x)=
          43
          ax3+x2-(a+5)x
          ,如果函數(shù)y=f(x)在區(qū)間[-1,1]上不單調(diào),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a
          (1)若f(x)≤0在R上恒成立,求a的取值范圍.
          (2)若函數(shù)y=f(x)在區(qū)間[-1,1]上恰有一個零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•河西區(qū)二模)已知a是實數(shù),函數(shù)f(x)=x3-(a+
          32
          )x2
          +2ax+1
          (Ⅰ)若f′(2)=4,求a的值及曲線y=f(x)在點(2,f(2))處的切線方程;
          (Ⅱ)求f(x)在區(qū)間[1,4]上的最大值.

          查看答案和解析>>

          同步練習冊答案