【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.
【答案】
(1)解:∵全集U=R,集合A={x|x<﹣2或3<x≤4},
∴UA={x|﹣2≤x≤3或x>4}
(2)解:由集合B中的不等式變形得:(x﹣5)(x+3)≤0,
解得:﹣3≤x≤5,即B={x|﹣3≤x≤5},
則A∪B={x|x≤5}
(3)解:∵B∩C=B,∴BC,
∵B={x|﹣3≤x≤5},C={x|x>a},
∴a<﹣3.
【解析】(1)由全集R及集合A,求出A的補(bǔ)集即可;(2)由A與B,求出兩集合的并集即可;(3)根據(jù)B∩C=B,得到B為C的子集,由B與C求出a的范圍即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解集合的并集運(yùn)算(并集的性質(zhì):(1)AA∪B,B
A∪B,A∪A=A,A∪
=A,A∪B=B∪A;(2)若A∪B=B,則A
B,反之也成立),還要掌握集合的交集運(yùn)算(交集的性質(zhì):(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形中,
,
,點(diǎn)
為
中點(diǎn),沿
將
折起至
,如下圖所示,點(diǎn)
在面
的射影
落在
上.
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
為平行四邊形,其中
,
,
,等邊
所在平面與平面
垂直.
(Ⅰ)點(diǎn)在棱
上,且
,
為
的重心,求證:
平面
;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù) 在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質(zhì)?說(shuō)明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
,動(dòng)點(diǎn)
滿足
.設(shè)動(dòng)點(diǎn)
的軌跡為
.
(1)求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明軌跡
是什么圖形;
(2)求動(dòng)點(diǎn)與定點(diǎn)
連線的斜率的最小值;
(3)設(shè)直線交軌跡
于
兩點(diǎn),是否存在以線段
為直徑的圓經(jīng)過(guò)
?若存在,求出實(shí)數(shù)
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
).
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若,
恒成立,求
的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形中,
,
與
相交于點(diǎn)
,
,
.
(I)求證:平面
;
(II)當(dāng)直線與平面
所成角的大小為
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a2x﹣4在區(qū)間(0,2)內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若,
,
是互不重合的直線,
,
,
是互不重合的平面,給出下列命題:
①若,
,
,則
或
;
②若,
,
,則
;
③若不垂直于
,則
不可能垂直于
內(nèi)的無(wú)數(shù)條直線;
④若,
,
,
,則
且
;
⑤若,
,
且
,
,
,則
,
,
.
其中正確的命題是__________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com