日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)滿足f(x)-f(x-1)=-8x+12和f(0)=-3.
          (1)求f(x);
          (2)分析該函數(shù)的單調(diào)性;
          (3)求函數(shù)在[2,3]上的最大值與最小值.
          分析:(1)設(shè)f(x)=ax2+bx+c(a≠0),依題意可求得a、b、c的值;
          (2)對該二次函數(shù)配方后可得f(x)=-4(x-1)2+1,從而可得該函數(shù)的單調(diào)區(qū)間;
          (3)利用f(x)=-4(x-1)2+1的單調(diào)性即可求得函數(shù)在[2,3]上的最大值與最小值.
          解答:解:(1)設(shè)f(x)=ax2+bx+c(a≠0),那么f(x-1)=a(x-1)2+b(x-1)+c.
          ∴f(x)-f(x-1)=2ax+(b-a)=-8x+12.
          由對應(yīng)系數(shù)相等得方程組
          2a=-8
          b-a=12
          ,
          解得:a=-4,b=8,
          ∴f(x)=-4x2+8x+c,
          又f(0)=-3,
          ∴c=-3.
          ∴f(x)=-4x2+8x-3;
          (2)∵f(x)=-4(x-1)2+1,
          ∴該函數(shù)的遞增區(qū)間為(-∞,1],遞減區(qū)間為[1,+∞);
          (3)∵f(x)=-4(x-1)2+1在區(qū)間[2,3]上單調(diào)遞減,
          ∴f(x)max=f(2)=-3,
          f(x)min=f(3)=-15.
          點(diǎn)評:本題考查函數(shù)單調(diào)性的判斷與證明,考查二次函數(shù)的單調(diào)性與最值,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案