日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•大興區(qū)一模)已知數(shù)列{an}的各項(xiàng)均為正整數(shù),且a1<a2<…<an,設(shè)集合Ak={x|x=
          n
          i=1
           
          λiai,λi=-1或λi=0,或λi=1}(1≤k≤n).
          性質(zhì)1:若對于?x∈Ak,存在唯一一組λi,(i=1,2,…,k)使x=
          n
          i=1
           
          λiai成立,則稱數(shù)列{an}為完備數(shù)列,當(dāng)k取最大值時(shí)稱數(shù)列{an}為k階完備數(shù)列.
          性質(zhì)2:若記mk=
          n
          i=1
           
          ai(1≤k≤n),且對于任意|x|≤mk,k∈Z,都有x∈AK成立,則稱數(shù)列P{an}為完整數(shù)列,當(dāng)k取最大值時(shí)稱數(shù)列{an}為k階完整數(shù)列.
          性質(zhì)3:若數(shù)列{an}同時(shí)具有性質(zhì)1及性質(zhì)2,則稱此數(shù)列{an}為完美數(shù)列,當(dāng)K取最大值時(shí){an}稱為K階完美數(shù)列;
          (Ⅰ)若數(shù)列{an}的通項(xiàng)公式為an=2n-1,求集合A2,并指出{an}分別為幾階完備數(shù)列,幾階完整數(shù)列,幾階完美數(shù)列;
          (Ⅱ)若數(shù)列{an}的通項(xiàng)公式為an=10n-1,求證:數(shù)列{an}為n階完備數(shù)列,并求出集合An中所有元素的和Sn
          (Ⅲ)若數(shù)列{an}為n階完美數(shù)列,試寫出集合An,并求數(shù)列{an}通項(xiàng)公式.
          分析:(Ⅰ)先根據(jù)題中的新定義定出集合A2={-4,-3,-2,-1,0,1,2,3,4},再根據(jù)幾階完備數(shù)列,幾階完整數(shù)列,幾階完美數(shù)列的定義得出結(jié)論;
          (Ⅱ)對于?x∈An,先假設(shè)存在2組λi及μi(i=1,2…,n)使x=
          n
          i=1
          λiai
          成立,則有(λ1-μ1)100+(λ2-μ2)101+…+(λn-μn)10n-1=0,從而必有λ11,λ22…λnn,從而得出數(shù)列{an}為n階完備數(shù)列;再利用對?x∈An,x=
          n
          i=1
          λiai
          ,則-x=-
          n
          i=1
          λiai=
          n
          i=1
          (-λi)ai
          ,得到-x∈An,從而求出Sn的值;
          (Ⅲ)若存在n階完美數(shù)列,則由性質(zhì)1易知An中必有3n個(gè)元素,由(Ⅱ)知An中元素成對出現(xiàn)(互為相反數(shù)),且0∈An,又{an}具有性質(zhì)2,從而得出數(shù)列{an}通項(xiàng)公式.
          解答:解:(Ⅰ)A2={-4,-3,-2,-1,0,1,2,3,4};
          ∴{an}為2階完備數(shù)列,2階完整數(shù)列,2階完美數(shù)列;
          (Ⅱ)若對于?x∈An,假設(shè)存在2組λi及μi(i=1,2…,n)使x=
          n
          i=1
          λiai
          成立,則有λ1100+λ2102+…+λn10n-1=μ1100+μ2102+…+μn10n-1,即(λ1-μ1)100+(λ2-μ2)101+…+(λn-μn)10n-1=0
          其中λi,μi∈{-1,0,1},必有λ11,λ22…λnn,
          所以僅存在唯一一組λi(i=1,2…,n)使x=
          n
          i=1
          λiai
          成立,
          即數(shù)列{an}為n階完備數(shù)列;Sn=0,對?x∈Anx=
          n
          i=1
          λiai
          ,則-x=-
          n
          i=1
          λiai=
          n
          i=1
          (-λi)ai
          ,因?yàn)棣?SUB>i∈{-1,0,1},則-λi∈{-1,0,1},所以-x∈An,即Sn=0
          (Ⅲ)若存在n階完美數(shù)列,則由性質(zhì)1易知An中必有3n個(gè)元素,
          由(Ⅱ)知An中元素成對出現(xiàn)(互為相反數(shù)),且0∈An,又{an}具有性質(zhì)2,
          則An中3n個(gè)元素必為An={-
          3n-1
          2
          ,-
          3n-3
          2
          ,…-1,0,1,…
          3n-3
          2
          ,
          3n-1
          2
          }

          an=3n-1
          點(diǎn)評:本小題主要考查一階、二階線性常系數(shù)遞歸數(shù)列的通項(xiàng)公式,考查分析問題、解決問題的能力.屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大興區(qū)一模)若集合M={y|y=2-x},P={y|y=
          x-1
          },則M∩P=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大興區(qū)一模)設(shè)(1-x)(1+2x)5=a0+a1x+a2x2+…+a6x6,則a2=
          30
          30

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大興區(qū)一模)復(fù)數(shù)(1+i)2的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大興區(qū)一模)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的離心率為
          3
          2
          ,實(shí)軸長為4,則雙曲線的方程是
          x2
          4
          -
          y2
          5 
          =1
          x2
          4
          -
          y2
          5 
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大興區(qū)一模)執(zhí)行如圖所示的程序框圖.若n=5,則輸出s的值是( 。

          查看答案和解析>>

          同步練習(xí)冊答案