日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】如圖,在矩形中, , 的中點,將三角形沿翻折到圖②的位置,使得平面 平面.

          (1)在線段上確定點,使得平面,并證明;

          (2)求所在平面構成的銳二面角的正切值.

          【答案】(1)詳見解析;(2) .

          【解析】試題分析:證明線面平行利用線面平行的判定定理,本題借助平行四邊形可以得到線線平行,進而證明線面平行;求二面角一是傳統(tǒng)方法,“一作,二證,三求”,本題采用傳統(tǒng)方法利用線面垂直做出二面角,然后求出二面角,二是建立空間直角坐標系,借助空間向量,求法向量,利用公式求角.

          試題解析:

          (Ⅰ)點是線段中點時, 平面.

          證明:記, 的延長線交于點,因為,所以點的中點,所以.

          在平面內, 在平面外,所以平面.

          (Ⅱ)在矩形中, ,

          因為平面 平面,且交線是,所以 平面.

          在平面內作 ,連接,則 .

          所以就是所在平面構成的銳二面角的平面角.

          因為, 所以.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知函數(其中為自然對數的底數),.

          (Ⅰ)當時,求的最小值;

          (Ⅱ)記,請證明下列結論:

          ①若,則對任意,有;

          ②若,則存在實數,使.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知二次函數g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
          (1)求函數g(x)的解析式;
          (2)設f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點D是AB的中點.
          (1)求證:AC1∥平面CDB1
          (2)二面角B1﹣CD﹣B的平面角的大。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖1,已知長方形ABCD中,AB=2,AD=1,E為DC的中點.將△ADE沿AE折起,使得平面ADE⊥平面ABCE.
          (1)求證:平面BDE⊥平面ADE
          (2)求三棱錐 C﹣BDE的體積

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設定義在D上的函數y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),當x≠x0時,若 >0在D內恒成立,則稱P為函數y=h(x)的“類對稱點”,則f(x)=x2﹣6x+4lnx的“類對稱點”的橫坐標是( )
          A.1
          B.
          C.e
          D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖(1)所示,已知四邊形是由和直角梯形拼接而成的,其中.且點為線段的中點, , .現(xiàn)將沿進行翻折,使得二面角的大小為90°,得到圖形如圖(2)所示,連接,點分別在線段上.

          (Ⅰ)證明: ;

          (Ⅱ)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設甲、乙、丙面試合格的概率分別是 , , ,且面試是否合格互不影響.求:
          (1)至少有1人面試合格的概率;
          (2)簽約人數ξ的分布列和數學期望.

          查看答案和解析>>

          同步練習冊答案