日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=3+log2x,x∈[1,4],則g(x)=f(x2)-[f(x)]2有( 。
          分析:根據(jù)復(fù)合函數(shù)對應(yīng)法則,得g(x)=(log2x)2-4log2x-6.再換元:令log2x=t,得g(x)=-t2-4t-6,其中0≤t≤1.最后結(jié)合二次函數(shù)在區(qū)間上求最值的方法,可得到本題的答案.
          解答:解:g(x)=f(x2)-[f(x)]2=3+log2x2-(3+log2x)2=(log2x)2-4log2x-6
          令log2x=t,結(jié)合x∈[1,4]且x2∈[1,4],得1≤x≤2
          g(x)=F(t)=-t2-4t-6,其中0≤t≤1
          ∵F(t)=-t2-4t-6=-(t-2)2-10,在[0,1]上是減函數(shù)
          ∴t=0時(shí),F(xiàn)(t)的最大值為-6;t=1時(shí),F(xiàn)(t)的最小值為-11
          即g(x)的最大值為-6,最小值為-11
          故選:C
          點(diǎn)評:本題給出以log2x為單位元的“類二次”函數(shù),求函數(shù)的最值.著重考查了對數(shù)運(yùn)算法則、復(fù)合函數(shù)運(yùn)算和二次函數(shù)在區(qū)間上求最值的方法等知識(shí),屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、已知f(x)=(1+x)+(1+x)2+(1+x)3+L+(1+x)10=a0+a1x+a2x2+L+a10x10,則a2=
          165

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=lnx,g(x)=
          1
          2
          x2
          +mx+
          7
          2
          (m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
          (1)求直線l的方程及實(shí)數(shù)m的值;
          (2)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
          (3)當(dāng)0<b<a時(shí),求證:f(a+b)-f(2a)<
          b-a
          2a

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax3+bx2-3x+
          1
          3
          ,f(2)=-7,f′(2)=-3,g(2)=1,g′(2)=-
          1
          2

          (1)求函數(shù)f(x)在[-4,4]的最大值和最小值;
          (2)設(shè)h(x)=
          f(x)+5
          g(x)
          ,求曲線y=h(x)在點(diǎn)(2,h(2))處的切線l的方程,并判斷l(xiāng)是否與曲線y=f(x)相切,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
          f1(x),f1(x)≤f2(x)
          f2(x),f1(x)>f2(x)

          (1)當(dāng)a=1時(shí),求f(x)的解析式;
          (2)在(1)的條件下,若方程f(x)-m=0有4個(gè)不等的實(shí)根,求實(shí)數(shù)m的范圍;
          (3)當(dāng)2≤a<9時(shí),設(shè)f(x)=f2(x)所對應(yīng)的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
          11
          01
          ;
          (I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
          (Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
          1
          2
          或x≤-
          5
          6
          }
          ,求實(shí)數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案