日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=x2-2(m-1)x+m2-2m-3,其中m為實(shí)數(shù).
          (1)求證:不論m取何實(shí)數(shù),這個(gè)二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
          (2)設(shè)這個(gè)二次函數(shù)的圖象與x軸交于點(diǎn)A(x1,0)、B(x2,0),且x1、x2的倒數(shù)和為
          23
          ,求這個(gè)二次函數(shù)的解析式.
          分析:(1)寫(xiě)出與這個(gè)二次函數(shù)相對(duì)應(yīng)的一元二次方程是x2-2(m-1)x+m2-2m-3=0,根據(jù)>0,得到方程有兩個(gè)不相等的實(shí)數(shù)根,得到這個(gè)二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn).
          (2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,確定x1+x2=2(m-1),x1•x2=m2-2m-3,把要求的代數(shù)式整理成只含有兩個(gè)根之和與之積的形式,代入含有m的代數(shù)式,解關(guān)于m的方程即可.
          解答:(1)證明:與這個(gè)二次函數(shù)相對(duì)應(yīng)的一元二次方程是x2-2(m-1)x+m2-2m-3=0,
          △=4(m-1)2-4(m2-2m-3)=16>0,
          所以,方程x2-2(m-1)x+m2-2m-3=0必有兩個(gè)不相等的實(shí)數(shù)根,
          所以,不論m取何實(shí)數(shù),這個(gè)二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn).(6分)
          (2)解:由題意,可知x1、x2是方程x2-2(m-1)x+m2-2m-3=0的兩個(gè)實(shí)數(shù)根,
          所以,x1+x2=2(m-1),x1•x2=m2-2m-3,
          1
          x1
          +
          1
          x2
          =
          2
          3
          ,即
          x1+x2
          x1x2
          =
          2
          3
          ,
          所以,
          2(m-1)
          m2-2m-3
          =
          2
          3
          ,解得m=0或m=5.
          所以,所求二次函數(shù)的解析式為y=x2+2x-3或y=x2-8x+12.(12分)
          點(diǎn)評(píng):本題考查一元二次方程根與系數(shù)之間的關(guān)系,考查一元二次方程與二次函數(shù)之間的關(guān)系,本題解題的關(guān)鍵是掌握三個(gè)二次之間的關(guān)系,本題是一個(gè)中檔題目.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿(mǎn)足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案