日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=x³-6x²+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:

              ①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

          其中正確結(jié)論的序號(hào)是

             A.①③     B.①④     C.②③    D.②④

          【解析】

           

          【答案】

          C

          【考點(diǎn)定位】本題考查函數(shù)的零點(diǎn),函數(shù)的單調(diào)性極值,考查分析判斷能力、必然與或然的能力

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ln(ax+b)的圖象在x=1處的切線方程為y=
          1
          2
          x-
          1
          2
          +ln2.
          (1)證明:方程f(x)-x=0有且只有一個(gè)實(shí)根;
          (2)若s,t∈(0,+∞),且s<t時(shí),試證明:(1+s)ef(t-1)>(1+t)ef(s-1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知
          a
          =(
          2
          ,-1),
          b
          =(
          2
          2
          ,2).f(x)=x2+
          a
          2x+
          a
          b
          ,數(shù)列{an}滿足a1=1,3an=f (an-1)+1
          (n∈N,n≥2),數(shù)列{bn}前n項(xiàng)和為Sn,且bn=
          1
          an+3

          (1)寫出y=f (x)的表達(dá)式;
          (2)判斷數(shù)列{an}的增減性;
          (3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
          1
          4
          ,如果存在,求出n1或n2的值,如果不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).
          (Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足:當(dāng)|x|≤1時(shí),有|f'(x)|≤
          3
          2
          恒成立,求函數(shù)f(x)的解析表達(dá)式;
          (Ⅲ)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=2
          3
          ,證明:
          OA
          OB
          不可能垂直.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=x2-alnx在(1,2]上是增函數(shù),g(x)=x-a
          x
          在(0,1)上是減函數(shù).
          (1)求a的值;
          (2)設(shè)函數(shù)φ(x)=2bx-
          1
          x2
          在(0,1]上是增函數(shù),且對(duì)于(0,1]內(nèi)的任意兩個(gè)變量s,t,恒有f(s)≥φ(t)成立,求實(shí)數(shù)b的取值范圍;
          (3)設(shè)h(x)=f′(x)-g(x)-2
          x
          +
          3
          x
          ,求證:[h(x)]n+2≥h(xn)+2n(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知函數(shù)f(x)=xlnx.

          (1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

          (2)當(dāng)b>0時(shí),求證:bb(其中e=2.718 28…是自然對(duì)數(shù)的底數(shù));

          (3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

          (文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

          (1)求和c的值.

          (2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

          (3)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案