日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)的定義域為D,若f(x)滿足下面兩個條件,則稱f(x)為閉函數(shù),[a,b]為函數(shù)f(x)的閉區(qū)間.①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].
          (1)寫出f(x)=x3的一個閉區(qū)間;
          (2)若f(x)=數(shù)學(xué)公式x3-k為閉函數(shù)求k取值范圍?

          解:(1)[0,1],[-1,1],[-1,0](不必加以說明寫出即可)
          (2)∵f(x)=x3-k
          ∴f′(x)=x2,
          ∵f′(x)≥0恒成立
          故f(x)=x3-k在定義域R上為增函數(shù)
          若f(x)=x3-k為閉函數(shù)
          則f(x)=x3-k=x 有至少兩個不同的解
          即k=x3-x有至少兩個不同的解
          令g(x)=x3-x
          則g′(x)=x2-1
          令g′(x)=0,則x=±1
          ∵g(-1)=,g(1)=
          即函數(shù)g(x)=x3-x的極大值為,極小值為-
          故k∈[-,]
          分析:(1)根據(jù)閉函數(shù)的定義,結(jié)合x3=x有三個解-1,0,1,可寫出使函數(shù)f(x)=x3為閉函數(shù)的區(qū)間;
          (2)根據(jù)閉函數(shù)的定義,結(jié)合f(x)=x3-k的單調(diào)性,可得f(x)=x3-k為閉函數(shù)時f(x)=x3-k=x至少有兩個不等的根,進而可得k取值范圍
          點評:本題以新定義為載體考查了函數(shù)的單調(diào)性及判斷,方程根的個數(shù)問題,正確理解新定義是解答的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為(0,+∞),f(x)的導(dǎo)函數(shù)為f′(x),且對任意正數(shù)x均有f′(x)>
          f(x)
          x

          (Ⅰ)判斷函數(shù)F(x)=
          f(x)
          x
          在(0,+∞)上的單調(diào)性;
          (Ⅱ)設(shè)x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          18、設(shè)F(x)的定義域為R,且滿足F(ab)=F(a)F(b),其中F(2)=8.定義在R上的函數(shù)f(x)滿足下述條件:①f(x)是奇函數(shù);②f(x+2)是偶函數(shù);③在[-2,2]上,f(x)=F(x)
          (1)設(shè)G(x)=f(x+4),判斷G(x)的奇偶性并證明;(2)解關(guān)于x的不等式:f(x)≤1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為[0,2],則函數(shù)f(x2)的定義域是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為D,若f(x)滿足下面兩個條件,則稱f(x)為閉函數(shù),[a,b]為函數(shù)f(x)的閉區(qū)間.①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].
          (1)寫出f(x)=x3的一個閉區(qū)間;
          (2)若f(x)=
          13
          x3-k為閉函數(shù)求k取值范圍?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為D,f(x)滿足下面兩個條件,則稱f(x)為閉函數(shù).
          ①f(x)在D內(nèi)是單調(diào)函數(shù);
          ②存在[a,b]⊆D,f(x)在[a,b]上的值域為[a,b].
          如果f(x)=
          2x+1
          +k
          為閉函數(shù),那么k的取值范圍是
          -1<k≤-
          1
          2
          -1<k≤-
          1
          2

          查看答案和解析>>

          同步練習(xí)冊答案