日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
          π2
          )
          的部分圖象如圖所示.
          (1)求函數(shù)f(x)的解析式;
          (2)若圖象g(x)與函數(shù)f(x)的圖象關(guān)于點(diǎn)P(4,0)對(duì)稱,求函數(shù)g(x)的單調(diào)遞增區(qū)間.
          分析:(1)由圖象,求出A,T=16,ω=
          π
          8
          ,利用函數(shù)過(-2,0)求出φ,然后求得函數(shù)f(x)的解析式;
          (2)函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于點(diǎn)P(4,0)對(duì)稱,滿足g(4+x)+f(4-x)=0,則g(x)=-f(8-x),然后求函數(shù)g(x)的表達(dá)式,再求它的單調(diào)遞增區(qū)間.
          解答:解:(1)由題意A=
          2
          ,T=16,ω=
          π
          8
          ,x=-2時(shí)f(x)=0,
          即:sin[
          π
          8
          ×(-2)+φ]=0;
          ∴φ=
          π
          4
          f(x)=
          2
          sin(
          π
          8
          x+
          π
          4
          )
          (6分)
          (2)∵g(4+x)+f(4-x)=2×0
          ∴g(x)=-f(8-x)=-
          2
          sin[
          π
          8
          (8-x)+
          π
          4
          ]

          =-
          2
          sin(
          4
          -
          π
          8
          x)=
          2
          sin(
          π
          8
          x-
          4
          )
          令2kπ-
          π
          2
          π
          8
          x-
          4
          ≤2kπ+
          π
          2

          得16k+6≤x≤16k+14(k∈Z).
          所以f(x)的單調(diào)遞增區(qū)間是[16k+6,16k+14](k∈Z).(12分)
          點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的單調(diào)性,注意化簡(jiǎn)x的系數(shù)為正,考查計(jì)算能力,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x+1

          (1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
          (2)確定a的值,使f(x)為奇函數(shù);
          (3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)
          a-x  ,x≤0
          1  ,0<x≤3
          (x-5)2-a,x>3
          (a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
          (1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
          (2)求函數(shù)f(t)-9的零點(diǎn);
          (3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          1
          2x+1
          ,若f(x)為奇函數(shù),則a=( 。
          A、
          1
          2
          B、2
          C、
          1
          3
          D、3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
          (III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x-1
          ,(a∈R)
          (1)求f(x)的定義域;
          (2)若f(x)為奇函數(shù),求a的值;
          (3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案