日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四棱錐P﹣ABCD的正視圖1是一個底邊長為4、腰長為3的等腰三角形,圖2、圖53分別是四棱錐P﹣ABCD的側(cè)視圖和俯視圖.
          (1)求證:AD⊥PC;
          (2)求四棱錐P﹣ABCD的側(cè)面積.

          【答案】
          (1)證明:依題意,可知點P在平面ABCD上的正射影是線段CD的中點E,連接PE,

          則PE⊥平面ABCD.

          ∵AD平面ABCD,

          ∴AD⊥PE.

          ∵AD⊥CD,CD∩PE=E,CD平面PCD,PE平面PCD,

          ∴AD⊥平面PCD.

          ∵PC平面PCD,

          ∴AD⊥PC.


          (2)解:依題意,在等腰三角形PCD中,PC=PD=3,DE=EC=2,

          在Rt△PED中, ,

          過E作EF⊥AB,垂足為F,連接PF,

          ∵PE⊥平面ABCD,AB平面ABCD,

          ∴AB⊥PE.

          ∵EF平面PEF,PE平面PEF,EF∩PE=E,

          ∴AB⊥平面PEF.

          ∵PF平面PEF,

          ∴AB⊥PF.

          依題意得EF=AD=2.

          在Rt△PEF中, ,

          ∴四棱錐P﹣ABCD的側(cè)面積


          【解析】(1)根據(jù)三視圖形狀可得側(cè)面PDC⊥平面ABCD,結(jié)合矩形ABCD中AD⊥CD,由面面垂直的性質(zhì)得AD⊥側(cè)面PDC.再根據(jù)線面垂直的性質(zhì),結(jié)合PC側(cè)面PDC可證出AD⊥PC;(2)過E作EF⊥AB,垂足為F,連接PF,分別求出側(cè)面積,即得四棱錐P﹣ABCD的側(cè)面積.
          【考點精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】有一個容量為100的樣本,其頻率分布直方圖如圖所示,已知樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)比樣本數(shù)據(jù)落在區(qū)間[8,10)內(nèi)的頻數(shù)少12,則實數(shù)m的值等于(
          A.0.10
          B.0.11
          C.0.12
          D.0.13

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知實數(shù)x,y滿足方程(x﹣2)2+(y﹣2)2=1.
          (1)求 的取值范圍;
          (2)求|x+y+l|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列方程表示的直線傾斜角為135°的是(
          A.y=x﹣1
          B.y﹣1= (x+2)
          C. + =1
          D. x+2y=0

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC兩兩垂直,則下列說法正確的是(
          A.直線OB∥平面ACD
          B.球面經(jīng)過點A,B,C,D四點的球的直徑是
          C.直線AD與OB所成角是45°
          D.二面角A﹣OC﹣D等于30°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=lg (a>0)為奇函數(shù),函數(shù)g(x)= +b(b∈R).
          (Ⅰ)求a;
          (Ⅱ)若b>1,討論方徎g(x)=ln|x|實數(shù)根的個數(shù);
          (Ⅲ)當x∈[ , ]時,關(guān)于x的不等式f(1﹣x)≤log(x)有解,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<π)圖象的最高點D的坐標為 ,與點D相鄰的最低點坐標為 . (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求滿足f(x)=1的實數(shù)x的集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABB1A1=n,則m、n所成角的正弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1,已知長方形ABCD中,AB=2,AD=1,E為DC的中點.將△ADE沿AE折起,使得平面ADE⊥平面ABCE.
          (1)求證:平面BDE⊥平面ADE
          (2)求三棱錐 C﹣BDE的體積

          查看答案和解析>>

          同步練習冊答案