日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,己知點(diǎn)A(-1,0)是直角△ABC的直角頂點(diǎn),頂點(diǎn)B在直線l上移動(dòng),斜邊BC所在的直線恒過定點(diǎn)M(1,0).

          (1)求頂點(diǎn)C的軌跡的方程

          (2)若P、Q是所求軌跡上的兩點(diǎn),直線PQ過點(diǎn)F(-2,0),且F在線段PQ之間,求△PQM面積的最小值.

          答案:
          解析:

            (1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

            則

            ,即①  2分

            又、、三點(diǎn)共線

            ∴  4分

            代入①得即:

            ∴點(diǎn)的軌跡方程為②  6分

            (2)設(shè),

            若軸,則直線代入②得

            

              8分

            若不垂直于軸設(shè)直線

            、兩點(diǎn)之間∴在雙曲線的左支上,且

            又雙曲線的漸近線為:

            即由③得代入②得

            

            即

            

            ∴  10分

            ∴

            綜上可知:面積的最小值是  12分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
          AE
          AC
          =
          AF
          AD
          =λ(0<λ<1)
          (1)求證:不論λ為何值,總有EF⊥平面ABC:
          (2)若λ=
          1
          2
          ,求三棱錐A-BEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,己知正四棱棱柱AC1中,AB=BC=1,BB1=2,連接B1C和A1C
          (1)在線段CC1上求一點(diǎn)E使得A1C⊥面BED(即求出CE的長(zhǎng));
          (2)求點(diǎn)A到平面A1B1C的距離;
          (3)求直線DE與平面A1B1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三5月模擬考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,己知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).

          (1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M軌跡C的方程:

          (2)若過點(diǎn)B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB二60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且=λ(0<λ<1)
          (1)求證:不論λ為何值,總有EF⊥平面ABC:
          (2)若λ=,求三棱錐A-BEF的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案