日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】關(guān)于函數(shù),給出下列命題:

          若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;

          若函數(shù)f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數(shù);

          若函數(shù)g(x)=是偶函數(shù),則f(x)=x+1;

          函數(shù)y=的定義域?yàn)?/span>.

          其中正確的命題是________.(寫出所有正確命題的序號(hào))

          【答案】①②

          【解析】因?yàn)閒(x+3)=f(x)且f(-x)=f(x),所以f(2)=f(-1+3)=f(-1)=f(1)=1,f(-4)=f(-1)=f(1)=1,故f(2)-f(-4)=0,正確.

          因?yàn)閒(x+1)f(x)=2 017,所以f(x+1)=,f(x+2)==f(x).所以f(x)是周期為2的周期函數(shù),正確.

          令x<0,則-x>0,g(-x)=-x-1.又g(x)為偶函數(shù),所以g(x)=g(-x)=-x-1.即f(x)=-x-1,不正確.

          要使函數(shù)有意義,需滿足

          即0<|2x-3|≤1,

          所以1≤x≤2且x≠,即函數(shù)的定義域?yàn)?/span>不正確.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為實(shí)數(shù).

          )當(dāng)時(shí),求函數(shù)上的最大值和最小值;

          )求函數(shù)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三次函數(shù)

          (1)若函數(shù)過點(diǎn)且在點(diǎn)處的切線方程是,求函數(shù)的解析式;

          (2)在(1)的條件下,若對(duì)于區(qū)間上任意兩個(gè)自變量的值

          都有,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知是上、下底邊長為2和6,高為的等腰梯形,將它沿對(duì)稱軸折疊,使二面角為直二面角.

          (1)證明:;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù).

          1)當(dāng)時(shí),解不等式;

          2)若,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面為線段上一點(diǎn),的中點(diǎn).

          (1)證明:平面;

          (2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項(xiàng)和Sn滿足=2×+1,則f(a5)+f(a6)=________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案