日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
          (1)求證:AE∥平面BDF;
          (2)求三棱錐D-ACE的體積.
          分析:(1)設(shè)AC∩BD=G,連接GF.由BF⊥面ACE,得到BF⊥CE,再由BE=BC,得到F為EC的中點(diǎn).在矩形ABCD中,G為AC中點(diǎn),由三角形的中位線可得到GF∥AE.再由線面平行的判定定理得證.
          (2)如圖所示:轉(zhuǎn)化頂點(diǎn),以平面ADC為底,又因?yàn)镺E⊥AB,OE⊥AD,得到OE⊥面ADC.所以O(shè)E為底面上高,分別求得底面積和高,再用三棱錐的體積公式求解.
          解答:證明:(1)設(shè)AC∩BD=G,連接GF.
          因?yàn)锽F⊥面ACE,CE?面ACE,所以BF⊥CE.
          因?yàn)锽E=BC,所以F為EC的中點(diǎn).(3分)
          在矩形ABCD中,G為AC中點(diǎn),所以GF∥AE.(5分)
          因?yàn)锳E?面BFD,GF?面BFD,所以AE∥面BFD.(7分)
          (2)取AB中點(diǎn)O,連接OE.因?yàn)锳E=EB,所以O(shè)E⊥AB.
          因?yàn)锳D⊥面ABE,OE?面ABE,所以O(shè)E⊥AD,
          所以O(shè)E⊥面ABD.(9分)
          因?yàn)锽F⊥面ACE,AE?面ACE,所以BF⊥AE.
          因?yàn)镃B⊥面ABE,AE?面ABE,所以AE⊥BC.
          又BF∩BC=B,所以AE⊥平面BCE.(11分)
          又BE?面BCE,所以AE⊥EB.
          所以AB=
          AE2+BE2
          =2
          2
          ,OE=
          1
          2
          AB=
          2
          .(12分)
          故三棱錐E-ADC的體積為
          VD-AEC=VE-ADC=
          1
          3
          S△ADC•OE=
          1
          3
          ×
          1
          2
          ×2×2
          2
          ×
          2
          =
          4
          3
          .(14分)
          點(diǎn)評:本題主要考查線線,線面關(guān)系的轉(zhuǎn)化,考查了線面平行,垂直的判定定理以及三棱錐體積的求法,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求棱錐A-PBC的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
          ⊙O于D,∠MDA=45°,則∠DCB=
          135°
          135°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
          (1)求證:FE∥平面PCD;
          (2)求異面直線DE與AB所成的角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求二面角B-AP-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
          (1)求證:PB∥平面AFC;
          (2)求多面體PABCF的體積.

          查看答案和解析>>

          同步練習(xí)冊答案