日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)
          如圖,酒杯的形狀為倒立的圓錐,杯深8 cm .上口寬6cm , 水以20 cm3/s的流量倒入杯中,當(dāng)水深為4 cm時(shí),求水升高的瞬時(shí)變化率.
          解法一:設(shè)時(shí)刻t s時(shí),杯中水的體積為Vcm3,水面半徑為r cm, 水深為h cm.

                                               2分
             5分
                          7分
          記水升高的瞬時(shí)變化率為(即當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于
          從而有,當(dāng)h=4時(shí),解得   12分
          答:當(dāng)水深為4 cm時(shí),水升高的瞬時(shí)變化率為。         14分
          解法二:仿解法一,可得,即      4分
              5分
          當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于,即無(wú)限趨近于   12分
          當(dāng)h=4時(shí),水升高的瞬時(shí)變化率是.                                14分
          解法三:水面高為4 cm時(shí),可求得水面半徑為,設(shè)水面高度增加時(shí),水的體積增加,從而,(用圓柱近似增加的水體積) ,              8分
          .當(dāng)無(wú)限趨近于0時(shí)得                   10分
                                                               12分
          答:當(dāng)水深為4 cm時(shí),水升高的瞬時(shí)變化率為。                 14分
          解法四:設(shè)t 時(shí)刻時(shí)注入杯中的水的高度為 h ,杯中水面為圓形,其圓半徑為r      1分
          如圖被子的軸截面為等腰三角形ABC,AO1O為底邊BC上的高,O1,O 分別為DE,BC中點(diǎn),
          容易求證,那么           2分
          時(shí)刻時(shí)杯中水的容積為V=     3分
          又因?yàn)閂="20t,                                " 4分
             即           6分
                                      8分
          當(dāng)h="4" 時(shí),設(shè)t=t1,
          由三角形形似的,               9分
          那么              10分
                12分
          答:當(dāng)水高為4 cm時(shí),水升高的瞬時(shí)變化率為cm/s                   14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          .設(shè)函數(shù)
          (Ⅰ)當(dāng)曲線處的切線斜率
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
          (Ⅲ)已知函數(shù)有三個(gè)互不相同的零點(diǎn)0,,且。若對(duì)任意的,恒成立,求m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


          (本小題滿分10分)
          已知曲線y=在x=x0處的切線L經(jīng)過(guò)點(diǎn)P(2,),求切線L的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          .已知函數(shù).
          (1)若存在單調(diào)增區(qū)間,求的取值范圍;
          (2)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出的取值范圍?若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知非零函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823174226415303.png" style="vertical-align:middle;" />,對(duì)任意的
          當(dāng)
          (1)判斷的單調(diào)性并予以證明;
          (2)若,求的值;
          (3)是否存在這樣的實(shí)數(shù),當(dāng),使不等式對(duì)所有的恒成立,若存在,求出的取值范圍;若不存在,說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          節(jié)日期間,某種鮮花進(jìn)價(jià)是每束元,銷售價(jià)是每束元;節(jié)后賣不出的鮮花以每束
          元的價(jià)格處理。根據(jù)前五年銷售情況預(yù)測(cè),節(jié)日期間這種鮮花的需求服從如下表所示的
          分布列。
             
            
            
            
            
             
            
            
            
            
          若進(jìn)這種鮮花束,則期望利潤(rùn)是(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          以初速度40m/s豎直向上拋一物體,ts時(shí)刻的位移 ,則此物體達(dá)到最高 時(shí)的高度為(    ).
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          函數(shù)的單調(diào)減區(qū)間為 
          A.B.C.D.(0, 2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          若曲線處的切線與直線互相垂直,則實(shí)數(shù)等于
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案