日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
          (1)判斷“ ”是“| |= ”的什么條件
          (2)設(shè)命題p:若 ,則m=﹣19,命題q:若集合A的子集個(gè)數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.

          【答案】
          (1)解:若 ,則6m=3m(m+1),∴m=1(m=0舍去),此時(shí), ,

          ,則m=±1,故“ ”是“ ”的充分不必要條件


          (2)解:若 ,則m(m+1)+18m=0,∴m=﹣19(m=0舍去),∴p為真命題.

          由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個(gè)數(shù)為2,則集合A中只有1個(gè)元素,

          則m2=2﹣m,解得m=1或﹣2,∴q為假命題.

          ∴p∨q為真命題,p∧q為假命題,¬q為真命題


          【解析】【(1)由 ,則6m=3m(m+1解出m即可判斷出結(jié)論.(2)若 ,則m(m+1)+18m=0,解出m,即可判斷出p真假.由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個(gè)數(shù)為2,則集合A中只有1個(gè)元素,

          則m2=2﹣m,解得m,即可判斷出真假.

          【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知A、B、C是拋物線y2=2px(p>0)上三個(gè)不同的點(diǎn),且AB⊥AC.

          (Ⅰ)若A(1,2),B(4,﹣4),求點(diǎn)C的坐標(biāo);
          (Ⅱ)若拋物線上存在點(diǎn)D,使得線段AD總被直線BC平分,求點(diǎn)A的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】Sn為數(shù)列{an}的前n項(xiàng)和,已知 .則{an}的通項(xiàng)公式an=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC, ,AB⊥AC,D是棱BB1的中點(diǎn).
          (Ⅰ)證明:平面A1DC⊥平面ADC;
          (Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的方程為x2+y2﹣6x=0,過點(diǎn)(1,2)的該圓的三條弦的長(zhǎng)a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) ,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
          (1)解不等式f(x)≥(m+n)x;
          (2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù)(單位:萬元):

          (1)求關(guān)于的線性回歸直線方程;

          (2)據(jù)此估計(jì)廣告費(fèi)用為10萬元時(shí)銷售收入的值.

          (附:對(duì)于線性回歸方程,其中

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)x>0,集合 ,若M∩N={1},則M∪N=(
          A.{0,1,2,4}
          B.{0,1,2}
          C.{1,4}
          D.{0,1,4}

          查看答案和解析>>

          同步練習(xí)冊(cè)答案