【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.
【答案】解:(Ⅰ)曲線C1的直角坐標方程為:x=4,
設P(x,y),M(4,y0),則 ,∴y0=
,
∵|OM||OP|=16,
∴ =16,
即(x2+y2)(1+ )=16,
整理得:(x﹣2)2+y2=4(x≠0),
∴點P的軌跡C2的直角坐標方程:(x﹣2)2+y2=4(x≠0).
(Ⅱ)點A的直角坐標為A(1, ),顯然點A在曲線C2上,|OA|=2,
∴曲線C2的圓心(2,0)到弦OA的距離d= =
,
∴△AOB的最大面積S= |OA|(2+
)=2+
.
【解析】(Ⅰ)設P(x,y),利用相似得出M點坐標,根據(jù)|OM||OP|=16列方程化簡即可;
(Ⅱ)求出曲線C2的圓心和半徑,得出B到OA的最大距離,即可得出最大面積.
【考點精析】本題主要考查了點到直線的距離公式的相關知識點,需要掌握點到直線
的距離為:
才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù));在極坐標系(與直角坐標系
取相同的單位長度,且以原點
為極點,以
軸正半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)求直線被曲線
截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校對校園進行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為
,假設每棵樹成活與否是相互獨立的.求:
(Ⅰ)兩種樹各成活一株的概率;
(Ⅱ)設ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4 , 坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為
(t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點坐標;
(2)若C上的點到l距離的最大值為 ,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕頭某通訊設備廠為適應市場需求,提高效益,特投入98萬元引進世界先進設備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設備可獲得的年利潤為50萬元.
請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設備多少年后,收回成本并開始盈利?(2)引進該設備若干年后,有兩種處理方案:第一種:年平均盈利達到最大值時,以26萬元的價格賣出;第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】因金融危機,某公司的出口額下降,為此有關專家提出兩種促進出口的方案,每種方案都需要分兩年實施。若實施方案一,預計第一年可以使出口額恢復到危機前的倍、
倍、
倍的概率分別為
、
、
;第二年可以使出口額為第一年的
倍、
倍的概率分別為
、
。若實施方案二,預計第一年可以使出口額恢復到危機前的
倍、
倍、
倍的概率分別為
、
、
;第二年可以使出口額為第一年的
倍、
倍的概率分別為
、
。實施每種方案第一年與第二年相互獨立。令
表示方案
實施兩年后出口額達到危機前的倍數(shù)。
(1)寫出的分布列;
(2)實施哪種方案,兩年后出口額超過危機前出口額的概率更大?
(3)不管哪種方案,如果實施兩年后出口額達不到、恰好達到、超過危機前出口額,預計利潤分別為萬元、
萬元、
萬元,問實施哪種方案的平均利潤更大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當屆
獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):
年份 | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 | 2008 |
屆別 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
主辦國家 | 聯(lián)邦 德國 | 加拿大 | 蘇聯(lián) | 美國 | 韓國 | 西班牙 | 美國 | 澳大 利亞 | 希臘 | 中國 |
上屆金牌數(shù) | 5 | 0 | 49 | 未參加 | 6 | 1 | 37 | 9 | 4 | 32 |
當界金牌數(shù) | 13 | 0 | 80 | 83 | 12 | 13 | 44 | 16 | 6 | 51 |
某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關系,
(1)求出主辦國在上屆所獲金牌數(shù)(設為)與在當屆所獲金牌數(shù)(設為
)之間的線性回歸方程
其中
(2)在2008年第29屆北京奧運會上日本獲得9塊金牌,則據(jù)此線性回歸方程估計在2020 年第 32 屆東
京奧運會上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com