日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z
          分析:分別對(duì)
          x
          yz
          +
          y
          zx
          ,
          y
          xz
          +
          z
          yx
          ,
          z
          xy
          +
          x
          yz
          進(jìn)行化簡(jiǎn)分析,得出與
          2
          z
          ,
          2
          x
          ,
          2
          y
          的關(guān)系,然后三個(gè)式子左右分別相加除以2即可得到結(jié)論.
          解答:證明:因?yàn)閤,y,z都是為正數(shù),
          所以
          x
          yz
          +
          y
          zx
          =
          1
          z
          (
          y
          x
          +
          x
          y
          )  ≥
          2
          z
             ①
          同理可得
          y
          xz
          +
          z
          yx
          2
          x
                              ②
          z
          xy
          +
          x
          yz
          2
          y
                              ③

          當(dāng)且僅當(dāng)x=y=z時(shí),以上三式等號(hào)都成立.
          將上述三個(gè)不等式兩邊分別相加,并除以2,
          得:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z
          點(diǎn)評(píng):本題考查不等式的證明,涉及基本不等式的應(yīng)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1 幾何證明選講
          如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
          B.選修4-2 矩陣與變換
          若點(diǎn)A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
          C.選修4-4 坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,
          曲線C1ρcos(θ+
          π
          4
          )=2
          2
          與曲線C2
          x=4t2
          y=4t
          (t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
          D.選修4-5 不等式選講
          已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          A.如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
          B.已知矩陣A=
          .
          1-2
          3-7
          .

          (1)求逆矩陣A-1;
          (2)若矩陣X滿足AX=
          3
          1
          ,試求矩陣X.
          C.坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+
          π
          4
          )=2
          2
          與曲線C2
          x=4t2
          y=4t
          ,(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
          D.已知x,y,z均為正數(shù),求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:隨堂練1+2 講·練·測(cè) 高中數(shù)學(xué)·必修1(蘇教版) 蘇教版 題型:047

          已知x、y、z均為正實(shí)數(shù),且3x=4y=6x,求證

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知x,y,z均為正實(shí)數(shù),且4xy+z2+2yz+2xz=8,則x+y+z的最小值是

          A.8                  B.4                   C.2                    D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年江蘇省南京外國(guó)語(yǔ)學(xué)校高考數(shù)學(xué)沖刺模擬試卷(解析版) 題型:解答題

          A.如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
          B.已知矩陣A=
          (1)求逆矩陣A-1;
          (2)若矩陣X滿足,試求矩陣X.
          C.坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+)=2與曲線C2
          ,(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
          D.已知x,y,z均為正數(shù),求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案