日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)
          如圖,四棱錐的底面為菱形,平面,, E、F分別為的中點,

          (Ⅰ)求證:平面平面
          (Ⅱ)求平面與平面所成的銳二面角的余弦值.
          (Ⅰ)先證得
          再證得.由,證出平面,所以,平面平面
          (Ⅱ)平面與平面所成的銳二面角的余弦值為

          試題分析:(Ⅰ)∵四邊形是菱形,

          中,,

          ,即
          ,   ∴.…………………2分
          平面,平面,
          .又∵,
          平面,………………………………………4分
          又∵平面,
          平面平面.  ………………………………6分
          (Ⅱ)解法一:由(1)知平面,而平面,
          ∴平面平面 ………………………7分
          平面,∴
          由(Ⅰ)知,又
          平面,又平面,
          ∴平面平面.…………………………9分
          ∴平面是平面與平面的公垂面.
          所以,就是平面與平面所成的銳二面角的平面角.……10分
          中,,即.……………11分
          ,

          所以,平面與平面所成的銳二面角的余弦值為.…………14分

          理(Ⅱ)解法二:以為原點,、分別為軸、軸的正方向,建立空間直角坐標(biāo)系,如圖所示.因為,,所以,
          、,…………7分
          ,,.………8分
          由(Ⅰ)知平面
          故平面的一個法向量為.……………………9分
          設(shè)平面的一個法向量為,
           ,即,令,
          .    …………………11分

          所以,平面與平面所成的銳二面角的余弦值為.……14分
          點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題解法較多二應(yīng)用向量則簡化了證明過程。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖:在三棱錐中,,是直角三角形,,,點分別為的中點。

          ⑴求證:;
          ⑵求直線與平面所成的角的大;
          ⑶求二面角的正切值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知兩個不同的平面,能判定//的條件是(    )
          A.分別平行于直線B.、分別垂直于直線
          C.分別垂直于平面D.內(nèi)有兩條直線分別平行于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖所示,在正四棱錐S-ABCD中,的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持.則動點的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,棱長為2的正方體中,E,F滿足

          (Ⅰ)求證:EF//平面AB;
          (Ⅱ)求證:EF

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點E恰與BC上的點P重合.設(shè),,,則當(dāng)__時,有最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知直線l垂直平面a,垂足為O.在矩形ABCD中AD=1,AB=2,若點A在l上移動,點 B在平面a上移動,則O、D兩點間的最大距離為
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)三棱錐中,,,

          (Ⅰ)求證:平面平面;
          (Ⅱ)若,且異面直線的夾角為時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,且平面⊥底面

          (1)求證:⊥平面
          (2)求直線與底面所成角的余弦值;
          (3)設(shè),求點到平面的距離.

          查看答案和解析>>

          同步練習(xí)冊答案