日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足數(shù)學(xué)公式(q是常數(shù)且q>0,q≠1,).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)當(dāng)數(shù)學(xué)公式時(shí),試證明a1+a2+…+an數(shù)學(xué)公式;
          (3)設(shè)函數(shù)f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),是否存在正整數(shù)m,使數(shù)學(xué)公式對(duì)任意n∈N*都成立?若存在,求出m的值,若不存在,說明理由.

          解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=(an-1-1)(2分)
          ?(2分)
          又由S1=a1=(a1-1)得a1=q(3分)
          ∴數(shù)列an是首項(xiàng)a1=q、公比為q的等比數(shù)列,∴an=q•qn-1=qn(5分)
          (2)(7分)
          =(9分)

          (3)bn=logqa1+logqa2+logqan=logq(a1a2an)=(9分)
          =(11分)
          ,即
          ∵n=1時(shí),
          ∴m≤3(14分)
          ∵m是正整數(shù),
          ∴m的值為1,2,3.(16分)
          分析:(1)由an=Sn-Sn-1=(an-1-1),知,由S1=a1=(a1-1)得a1=q,由此知an=q•qn-1=qn
          (2),由此能證明出a1+a2+…+an
          (3)bn=logqa1+logqa2+logqan=logq(a1a2an)=,=,所以,由此能求出m的值.
          點(diǎn)評(píng):本題考查數(shù)列和不等式的綜合運(yùn)用,解題時(shí)要注意等比數(shù)列性質(zhì)的靈活運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)求數(shù)列{anbn}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
          A、16B、8C、4D、不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
          (1)求k的值及通項(xiàng)公式an
          (2)求Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案