日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          kx+1,x≤0
          lnx,x>0
          ,則下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
          A.當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
          B.當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn)
          C.無(wú)論k為何值,均有2個(gè)零點(diǎn)
          D.無(wú)論k為何值,均有4個(gè)零點(diǎn)
          分四種情況討論.
          (1)x>1時(shí),lnx>0,∴y=f(f(x))+1=ln(lnx)+1,此時(shí)的零點(diǎn)為x=e
          1
          e
          >1;
          (2)0<x<1時(shí),lnx<0,∴y=f(f(x))+1=klnx+1,則k>0時(shí),有一個(gè)零點(diǎn),k<0時(shí),klnx+1>0沒(méi)有零點(diǎn);
          (3)若x<0,kx+1≤0時(shí),y=f(f(x))+1=k2x+k+1,則k>0時(shí),kx≤-1,k2x≤-k,可得k2x+k≤0,y有一個(gè)零點(diǎn),
          若k<0時(shí),則k2x+k≥0,y沒(méi)有零點(diǎn),
          (4)若x<0,kx+1>0時(shí),y=f(f(x))+1=ln(kx+1)+1,則k>0時(shí),即y=0可得kx+1=
          1
          e
          ,y有一個(gè)零點(diǎn),k<0時(shí)kx>0,y沒(méi)有零點(diǎn),
          綜上可知,當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn);
          故選B;
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列命題:
          (1)函數(shù)f(x)=log3(x2-2x)的單調(diào)減區(qū)間為(-∞,1);
          (2)已知P:|2x-3|>1,q:
          1
          x2+x-6
          >0
          ,則p是q的必要不充分條件;
          (3)命題“?x∈R,sinx≤
          1
          2
          ”的否定是:“?x∈R,sinx>”;
          (4)已知函數(shù)f(x)=
          3
          sinωx+cosωx(ω>0)
          ,y=f(x)的圖象與直線y=2的兩個(gè)相鄰交點(diǎn)的距離等于π,則y=f(x)的單調(diào)遞增區(qū)間是[kπ-
          π
          3
          ,kπ+
          π
          6
          ],k∈z

          (5)用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時(shí),從“k”到“k+1”的證明,左邊需增添的一個(gè)因式是2(2k+1);
          其中所有正確的個(gè)數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          4x
          4x+2

          (1)試求f(
          1
          n
          )+f(
          n-1
          n
          )(n∈N*)
          的值;
          (2)若數(shù)列{an}滿足an=f(0)+f(
          1
          n
          )
          +f(
          2
          n
          )
          +…+f(
          n-1
          n
          )
          +f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
          (3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項(xiàng)的和,是否存在正實(shí)數(shù)k,使不等式knSn>4bn對(duì)于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2004•黃浦區(qū)一模)已知函數(shù)f(x)=k+
          x
          ,存在區(qū)間[a,b]⊆[0,+∞),使f(x)在[a,b]上的值域仍是[a,b],求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,g(x)=(3-k2)(logax+logxa),(其中a>1),設(shè)t=logax+logxa.
          (Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
          (Ⅱ)當(dāng)x∈(1,+∞)時(shí),若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:吉林省模擬題 題型:單選題

          已知函數(shù)f(x)=+k定義域?yàn)镈,且方程f(x)=x在D上有兩個(gè)不等實(shí)根,則k的取值范圍是
          [     ]
          A.-1<k≤
          B.≤k<1
          C.k>-1
          D.k<1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案