日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),數(shù)列滿足
          (1)求;
          (2)猜想數(shù)列的通項,并予以證明.
          (1)由,得,,
          (2)猜想:,證明見解析
          (1)由,得,


          (2)猜想:,
          證明:(1)當(dāng)時,結(jié)論顯然成立;
          (2)假設(shè)當(dāng)時,結(jié)論成立,即;
          那么,當(dāng)時,由
          這就是說,當(dāng)時,結(jié)論成立;
          由(1),(2)可知,對于一切自然數(shù)都成立.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          先閱讀下列不等式的證法,再解決后面的問題:已知,,求證
          證明:構(gòu)造函數(shù),
          因為對一切,恒有≥0,所以≤0,從而得
          (1)若,,請寫出上述結(jié)論的推廣式;
          (2)參考上述解法,對你推廣的結(jié)論加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為______________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖:一個粒子在第一象限運動,在第一秒內(nèi)它從原點運動到,然后它接著按圖示在軸、軸的平行方向向右、向上來回運動,且每秒移動一個單位長度,求秒時,這個粒子所處的位置

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,若射線OM,ON上分別存在點M1,M2與點N1,N2,則=·;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點P1,P2,點Q1,Q2和點R1,R2,則類似的結(jié)論是什么?這個結(jié)論正確嗎?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線有性質(zhì):過拋物線的焦點作一直線與拋物線交于、兩點,則當(dāng)與拋物線的對稱軸垂直時,的長度最短;試將上述命題類比到其他曲線,寫出相應(yīng)的一個真命題為             

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分50分)設(shè),是互不相同的正整數(shù),
          求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知:空間四邊形ABCD中,E,F(xiàn)分別為BC,CD的中點,判斷直線EF與平面ABD的關(guān)系是    .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


          “因為四邊形ABCD是矩形,所四邊形ABCD的對角線相等”,補充以上推理的大前提是(   )
          A.矩形都是四邊形;B.四邊形的對角線都相等;
          C.矩形都是對角線相等的四邊形;D.對角線都相等的四邊形是矩形

          查看答案和解析>>

          同步練習(xí)冊答案