日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          13
          x3-2x2+ax(a∈R,x∈R)
          在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.
          (Ⅰ)求a的值和切線l的方程;
          (Ⅱ)設(shè)曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍.
          分析:(1)由已知可得函數(shù)的導(dǎo)函數(shù),即切線斜率的函數(shù),因為在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直,所以導(dǎo)函數(shù)只有一個實根,進而易得a的值與切線1的方程.
          (2)因為在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直,顯然切線斜率≥-1從而可以解出θ的范圍.
          解答:解:(Ⅰ)∵f(x)=
          1
          3
          x2-2x2+ax

          ∴f/(x)=x2-4x+a.(2分)
          ∵在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直,
          ∴x2-4x+a=-1有且只有一個實數(shù)根.
          ∴△=16-4(a+1)=0,
          ∴a=3.(4分)
          ∴x=2,f(2)=
          2
          3

          ∴切線l:y-
          2
          3
          =-(x-2)
          ,即3x+3y-8=0.(7分)
          (Ⅱ)∵f/(x)=x2-4x+3=(x-2)2-1≥-1.(9分)
          ∴tanθ≥-1,(10分)
          ∵θ∈[0,π),
          θ∈[0,
          π
          2
          )∪[
          4
          ,π)
          (13分)
          點評:本題考查了直線的點斜式方程及直線的傾斜角,是一道綜合題,應(yīng)注意運用導(dǎo)函數(shù)求解.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點;
          ②?x∈(8,+∞),f(x)>0.
          則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實數(shù)a的取值范圍;
          (2)當x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習冊答案