日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知四棱錐的P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD且AP=AB=3,
          AD=數(shù)學公式,∠ABC=60°.
          (Ⅰ)點F為線段PB上一點,PF:FB=2,求證:CF∥面ADP;
          (Ⅱ)求二面角F-AC-B的余弦值.

          證明:(I)過點C做AB的垂線CE,E為垂足
          ∵AB⊥AD
          ∴AD∥CE
          又∵AB∥CD
          ∴四邊形ABCD為平行四邊形
          ∴CE=AD=
          在Rt△BCE中,CE=BEtan60°
          ∴BE=1
          ∴AE=2…3分
          如圖,以A為原點建立空間直角坐標系,則A(0,0,0),B(0,3,0),P(0,0,3),C(,2,0)
          ∵PF:FB=2:1
          ∴F(0,2,1)
          =(-,0,1),=(0,3,0)
          又∵=0,
          ,
          ∵AB⊥平面ADP,即平面ADP的法向量為
          故CF∥平面ADP…6分
          (II)設(shè)平面AFC的法向量為=(x,y,z),則,
          =0,=0,

          =(1,
          又AP⊥平面ACB,故=(0,0,3)為平面ACB的一個法向量,
          ∴二面角F-AC-B的余弦值為==…12分
          分析:(I)過點C做AB的垂線CE,E為垂足,我們易求出AE的值,進而A為原點建立空間直角坐標系,求出直線CF的方向向量和平面ADP的法向量,根據(jù)兩個向量的數(shù)量積為0,得到兩個向量垂直,進而得到CF∥面ADP;
          (Ⅱ)分別求出平面FAC和平面ABC的法向量,代入向量夾角公式,即可求出二面角F-AC-B的余弦值.
          點評:本題考查的知識點是二面角的平面角及其求法,直線與平面平行的判定,其中(I)的關(guān)鍵是證得直線CF的方向向量和平面ADP的法向量垂直,(II)的發(fā)是求出平面FAC和平面ABC的法向量,將二面角問題轉(zhuǎn)化為向量夾角問題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐的P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD且AP=AB=3,
          AD=
          3
          ,∠ABC=60°.
          (Ⅰ)點F為線段PB上一點,PF:FB=2,求證:CF∥面ADP;
          (Ⅱ)求二面角F-AC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知四棱錐P-ABCD的底面為正方形,PA⊥底面ABCD,且PA=AB=2,M是PB的中點,則點P到平面ACM的距離為
          2
          3
          3
          2
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年河南省五市高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

          如圖,已知四棱錐的P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD且AP=AB=3,
          AD=,∠ABC=60°.
          (Ⅰ)點F為線段PB上一點,PF:FB=2,求證:CF∥面ADP;
          (Ⅱ)求二面角F-AC-B的余弦值.

          查看答案和解析>>

          同步練習冊答案