日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知圓O的直徑AB長(zhǎng)度為4,點(diǎn)D為線段AB上一點(diǎn),且數(shù)學(xué)公式,點(diǎn)C為圓O上一點(diǎn),且數(shù)學(xué)公式.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=BD.
          (Ⅰ)求證:CD⊥平面PAB;
          (Ⅱ)求PD與平面PBC所成的角的正弦值.

          (Ⅰ)證明:連接CO,由3AD=DB知,點(diǎn)D為AO的中點(diǎn),
          又∵AB為圓O的直徑,∴AC⊥CB,
          知,∠CAB=60°,
          ∴△ACO為等邊三角形,從而CD⊥AO.
          ∵點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,
          ∴PD⊥平面ABC,又CD?平面ABC,
          ∴PD⊥CD,
          由PD∩AO=D得,CD⊥平面PAB.
          (Ⅱ)解:由(Ⅰ)可知CD=,PD=DB=3,
          過(guò)點(diǎn)D作DE⊥CB,垂足為E,連接PE,再過(guò)點(diǎn)D作DF⊥PE,垂足為F.
          ∵PD⊥平面ABC,又CB?平面ABC,
          ∴PD⊥CB,又PD∩DE=D,
          ∴CB⊥平面PDE,又DF?平面PDE,
          ∴CB⊥DF,又CB∩PE=E,
          ∴DF⊥平面PBC,故∠DPF為所求的線面角.
          在Rt△DEB中,DE=DBsin30°=,,

          分析:(I)由已知可得△ACO為等邊三角形,從而CD⊥AO.由點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,可得PD⊥平面ABC,得到PD⊥CD,再利用線面垂直的判定定理即可證明;
          (II)過(guò)點(diǎn)D作DE⊥CB,垂足為E,連接PE,再過(guò)點(diǎn)D作DF⊥PE,垂足為F.得到DF⊥平面PBC,故∠DPF為所求的線面角.在Rt△DEB中,利用邊角關(guān)系求出DE即可.
          點(diǎn)評(píng):熟練掌握等邊三角形的判定與性質(zhì)、正投影的意義、線面垂直的判定與性質(zhì)定理、線面角的定義與作法、直角三角形的邊角關(guān)系等是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖:已知圓O的直徑是2,點(diǎn)C在直徑AB的延長(zhǎng)線上,BC=1,點(diǎn)P是圓O上的一個(gè)動(dòng)點(diǎn),以PC為邊作正三角形PCD,且點(diǎn)D與圓心分別在PC的兩側(cè),求四邊形OPDC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB.點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn).
          (Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
          (Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知圓O的直徑AB長(zhǎng)度為4,點(diǎn)D為線段AB上一點(diǎn),且AD=
          1
          3
          DB
          ,點(diǎn)C為圓O上一點(diǎn),且BC=
          3
          AC
          .點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=BD.
          (Ⅰ)求證:CD⊥平面PAB;
          (Ⅱ)求PD與平面PBC所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•佛山一模)如圖,已知圓O的直徑AB長(zhǎng)度為4,點(diǎn)D為線段AB上一點(diǎn),且AD=
          1
          3
          DB
          ,點(diǎn)C為圓O上一點(diǎn),且BC=
          3
          AC
          .點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=BD.
          (1)求證:CD⊥平面PAB;
          (2)求點(diǎn)D到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北衡水中學(xué)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題12分)

          如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。

          (Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;

          (Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案