日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•(
          1
          2
          )x+(
          1
          4
          )x
          ; g(x)=
          1-m•x2
          1+m•x2

          (1)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
          (2)已知m>-1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.
          分析:(1)由題意知,|f(x)|≤3在[1,+∞)上恒成立.可得-3≤f(x)≤3,-4-(
          1
          4
          )x≤a•(
          1
          2
          )x≤2-(
          1
          4
          )x
          ,化為-4•2x-(
          1
          2
          )x≤a≤2•2x-(
          1
          2
          )x
          在[0,+∞)上恒成立,因此[-4•2x-(
          1
          2
          )
          x
          ]max≤a≤[2•2x-(
          1
          2
          )
          x
          ]min
          .設(shè)2x=t,h(t)=-4t-
          1
          t
          p(t)=2t-
          1
          t
          ,先證明其單調(diào)性,即可得出其最值.
          (2)g(x)=-1+
          2
          m•x2+1
          ,對m分類討論:m>0,m=0,-1<m<0,利用二次函數(shù)和反比例函數(shù)的單調(diào)性即可得出.
          解答:解:(1)由題意知,|f(x)|≤3在[1,+∞)上恒成立.
          ∴-3≤f(x)≤3,-4-(
          1
          4
          )x≤a•(
          1
          2
          )x≤2-(
          1
          4
          )x

          -4•2x-(
          1
          2
          )x≤a≤2•2x-(
          1
          2
          )x
          在[0,+∞)上恒成立,
          [-4•2x-(
          1
          2
          )
          x
          ]max≤a≤[2•2x-(
          1
          2
          )
          x
          ]min

          設(shè)2x=t,h(t)=-4t-
          1
          t
          p(t)=2t-
          1
          t

          由x∈[0,+∞)得 t≥1,設(shè)1≤t1<t2,
          h(t1)-h(t2)=
          (t2-t1)(4t1t2-1)
          t1t2
          >0
          ,
          p(t1)-p(t2)=
          (t1-t2)(2t1t2+1)
          t1t2
          <0

          ∴h(t)在[1,+∞)上遞減,p(t)在[1,+∞)上遞增,
          h(t)在[1,+∞)上的最大值為h(1)=-5,p(t)在[1,+∞)上的最小值為p(1)=1.
          ∴實數(shù)a的取值范圍為[-5,1].
          (2)g(x)=-1+
          2
          m•x2+1

          若m>0,x∈[0,1],則g(x)在[0,1]上遞減,
          ∴g(1)≤g(x)≤g(0)即
          1-m
          1+m
          ≤g(x)≤1

          若-1<m<0,x∈[0,1],則g(x)在[0,1]上遞增,
          ∴g(0)≤g(x)≤g(1)即1≤g(x)≤
          1-m
          1+m

          ①當(dāng)m>0時,|
          1-m
          1+m
          |<1
          ,|g(x)|<1此時  T(m)≥1,
          ②當(dāng)m=0,即,g(x)=1,|g(x)|=1此時  T(m)≥1,
          ③當(dāng)-1<m<0時,|g(x)|<
          1-m
          1+m
          ,此時 T(m)≥
          1-m
          1+m

          綜上所述:當(dāng)m≥0時,T(m)的取值范圍是[1,+∞);
          當(dāng)-1<m<0時,T(m)的取值范圍是  [
          1-m
          1+m
          ,+∞)
          點評:本題綜合考查了恒成立問題的等價轉(zhuǎn)化、指數(shù)函數(shù)類型的函數(shù)的單調(diào)性、分類討論的思想方法等基礎(chǔ)知識與基本方法,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
          已知函數(shù)f(x)=1+a•(
          1
          2
          x+(
          1
          4
          x;g(x)=
          1-m•x2
          1+m•x2

          (Ⅰ)當(dāng)a=1時,求函數(shù)f(x)值域并說明函數(shù)f(x)在(-∞,0)上是否為有界函數(shù)?
          (Ⅱ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
          (Ⅲ)已知m>-1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x),如果滿足對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=1+x+ax2
          (1)當(dāng)a=-1時,求函數(shù)f(x)在(-∞,0)上的值域,判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),并說明理由;
          (2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個寬度為d的通道.給出下列函數(shù):①f(x)=
          1
          x
          ,②f(x)=sinx,③f(x)=
          x2-1
          ,其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
          (1)試判斷函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上是否有下界?并說明理由;
          (2)已知某質(zhì)點的運動方程為S(t)=at-2
          t+1
          ,要使在t∈[0,+∞)上的每一時刻該質(zhì)點的瞬時速度是以A=
          1
          2
          為下界的函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案