日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12-an+1an-2an2=0(n∈N*)且a3+2是a2、a4的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式an
          (2)若bn=anlog
          12
          an
          ,求證:{bn}的前n項(xiàng)和Sn≤-2.
          分析:(1)根據(jù)數(shù)列是一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12-an+1an-2an2=0,把這個(gè)式子分解,變?yōu)閮蓚(gè)因式乘積的形式,(an+1+an)(an+1-2an)=0,注意數(shù)列是一個(gè)正項(xiàng)數(shù)列,得到an+1-2an=0,得到數(shù)列是一個(gè)等比數(shù)列,寫出通項(xiàng).
          (2)本題構(gòu)造了一個(gè)新數(shù)列,要求新數(shù)列的和,注意觀察數(shù)列是有一個(gè)等差數(shù)列和一個(gè)等比數(shù)列乘積組成,需要用錯(cuò)位相減來(lái)求和,求出Sn即可比較與-2的大小關(guān)系.
          解答:解:(1)∵an+12-an+1an-2an2=0,∴(an+1+an)(an+1-2an)=0,
          ∵數(shù)列{an}的各項(xiàng)均為正數(shù),
          ∴an+1+an>0,
          ∴an+1-2an=0,
          即an+1=2an,所以數(shù)列{an}是以2為公比的等比數(shù)列.
          ∵a3+2是a2,a4的等差中項(xiàng),
          ∴a2+a4=2a3+4,
          ∴2a1+8a1=8a1+4,
          ∴a1=2,
          ∴數(shù)列{an}的通項(xiàng)公式an=2n
          (2)由(1)及bn=anlog
          1
          2
          an
          得,bn=-n•2n,
          ∵Sn=b1+b2++bn,
          ∴Sn=-2-2•22-3•23-4•24--n•2n
          ∴2Sn=-22-2•23-3•24-4•25--(n-1)•2n-n•2n+1
          ①-②得,Sn=2+22+23+24+25++2n-n•2n+1
          =
          2(1-2n)
          1-2
          -n•2n+1=(1-n)•2n+1-2
          ≤-2
          ∴{bn}的前n項(xiàng)和Sn≤-2.
          點(diǎn)評(píng):本題主要考查了數(shù)量的遞推關(guān)系,數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ),所以在高考中占有重要的地位.高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:青島二模 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案