日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=5,
          E、F分別為D1D、B1B上的點(diǎn),且DE=B1F=1.
          (Ⅰ)求證:BE⊥平面ACF;
          (Ⅱ)求點(diǎn)E到平面ACF的距離.

          解:(Ⅰ)如圖,以D為原點(diǎn),DA、DC、DD1所在直線分別為x、y、z軸
          建立空間直角坐標(biāo)系,則D(0,0,0),A(2,0,0),B(2,2,0),
          C(0,2,0),D1(0,0,5),E(0,0,1),F(xiàn)(2,2,4)
          =(-2,2,0),=(0,2,4),
          =(-2,-2,1),=(-2,0,1).

          ∴BE⊥AC,BE⊥AF,且AC∩AF=A
          ∴BE⊥平面ACF
          (Ⅱ)由(Ⅰ)知,為平面ACF的一個(gè)法向量
          ∴向量上的射影長即為E到平面ACF的距離,設(shè)為d
          于是 d==
          故點(diǎn)E到平面ACF的距離
          分析:(I)以D為原點(diǎn),DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,寫出要用的點(diǎn)的坐標(biāo),要證明線與面垂直,只要證明這條直線與平面上的兩條直線垂直.
          (II)為平面ACF的一個(gè)法向量,向量上的射影長即為E到平面ACF的距離,根據(jù)點(diǎn)到面的距離公式得到結(jié)果.
          點(diǎn)評(píng):本題是一個(gè)立體幾何的綜合題目,題目的第一問,用空間向量來證明,實(shí)際上若不是為了后一問應(yīng)用方便,可以采用幾何法來證明.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,已知AA1=4,AB=2,E是棱CC1上的一個(gè)動(dòng)點(diǎn).
          (Ⅰ)求證:BE∥平面AA1D1D;
          (Ⅱ)當(dāng)CE=1時(shí),求二面角B-ED-C的大;
          (Ⅲ)當(dāng)CE等于何值時(shí),A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),側(cè)棱AA′=
          3
          ,AB=
          2
          ,則二面角A′-BD-A的大小為( 。
          A、30°B、45°
          C、60°D、90°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島一模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
          2
          a
          ,E為CC1的中點(diǎn),AC∩BD=O.
          (Ⅰ) 證明:OE∥平面ABC1;
          (Ⅱ)證明:A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=A(x0,y0)AB=2,點(diǎn)E、M分別為A1B、C1C的中點(diǎn).
          (Ⅰ)求證:EM∥平面A1B1C1D1
          (Ⅱ)求幾何體B-CME的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•宜昌模擬)如圖,在正四棱柱ABCD-A1B1C1D1 中,AB=BC=1,AA1=2.過頂點(diǎn)D1在空間作直線l,使l與直線AC和BC1所成的角都等于60°,這樣的直線l最多可作( 。

          查看答案和解析>>

          同步練習(xí)冊答案