日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知 =
          (1)求角A的大。
          (2)當(dāng)a=6時(shí),求△ABC面積的最大值,并指出面積最大時(shí)△ABC的形狀.

          【答案】
          (1)解:由 ,得 ,

          又sin(A+B)=sin(π﹣C)=sinC,

          ∴sin(A﹣B)=sinB+sinC,

          ∴sin(A﹣B)=sinB+sin(A+B),

          ∴sinAcosB﹣cosAsinB=sinB+sinAcosB+cosAsinB,

          ∴sinB+2cosAsinB=0,又sinB≠0,

          ,

          ∵A∈(0,π),


          (2)解:解法一:由余弦定理a2=b2+c2﹣2bccosA得36=b2+c2+bc,

          ∵b2+c2≥2bc,

          ∴36=b2+c2+bc≥3bc,即bc≤12,

          ,

          當(dāng)且僅當(dāng) 時(shí),“=”成立,

          ∴△ABC面積的最大值為 ,此時(shí)△ABC為等腰三角形.

          解法二:∴

          = = ,

          = ,

          由正弦定理 ,

          ,

          當(dāng) ,即 時(shí), ,

          ∴△ABC面積的最大值為 ,此時(shí)△ABC為等腰三角形


          【解析】(1)由正弦定理,三角形內(nèi)角和定理,兩角和與差的正弦函數(shù)公式化簡(jiǎn)已知等式可得sinB+2cosAsinB=0,又sinB≠0,可得 ,結(jié)合范圍A∈(0,π),即可得解A的值.(2)解法一:由余弦定理及基本不等式可得bc≤12,利用三角形面積公式即可得解△ABC面積的最大值,且可得△ABC為等腰三角形;解法二:由三角形面積公式,正弦定理,三角形內(nèi)角和定理可得S= ,由正弦定理 ,可得R的值,從而利用正弦函數(shù)的性質(zhì)可求△ABC面積的最大值,即可判斷△ABC為等腰三角形.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=ax5﹣bx+1,若f(lg(log510))=5,求f(lg(lg5))的值(
          A.﹣3
          B.5
          C.﹣5
          D.﹣9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在半徑為3m的 圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng)AB=xm,圓柱的體積為Vm3
          (1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;
          (2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子體積V最大?最大體積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= g(x)= ,則函數(shù)f[g(x)]的所有零點(diǎn)之和是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ,g(x)=kx+1,若方程f(x)﹣g(x)=0有兩個(gè)不同實(shí)根,則實(shí)數(shù)k的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=kx,g(x)=
          (1)求函數(shù)g(x)= 的單調(diào)區(qū)間;
          (2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),
          (1)求實(shí)數(shù)a的值;
          (2)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍;
          (3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          如圖,已知四棱錐的底面為菱形,且, .

          I)求證:平面 平面;

          II)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),關(guān)于的不等式只有兩個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案