日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,四棱錐 中,底面 為菱形,且直線 又棱 的中點,
          (Ⅰ) 求證:直線 ;
          (Ⅱ) 求直線 與平面 的正切值.

          【答案】解:證明:∵∠ADE=∠ABC=60°,ED=1,AD=2∴△AED是以∠AED為直角的Rt△
          又∵AB∥CD, ∴EA⊥AB
          又PA⊥平面ABCD,∴EA⊥PA,
          ∴EA⊥平面PAB,
          (Ⅱ)

          如圖所示,連結(jié)PE,過A點作AH⊥PE于H點
          ∵CD⊥EA, CD⊥PA
          ∴CD⊥平面PAE,∴AH⊥CD,又AH⊥PE
          ∴AH⊥平面PCD
          ∴∠AEP為直線AE與平面PCD所成角
          在Rt△PAE中,∵PA=2,AE=

          【解析】(1)只需證明直線EA⊥AB,且EA⊥PA即可;
          (2)先證明AH⊥平面PCD,得出∠AEP為直線AE與平面PCD所成角,在Rt△PAE中計算tan∠AEP的值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一個角形海灣AOB,AOB=2θ(常數(shù)θ為銳角).擬用長度為l(l為常數(shù))的圍網(wǎng)圍成一個養(yǎng)殖區(qū),有以下兩種方案可供選擇:

          方案一 如圖1,圍成扇形養(yǎng)殖區(qū)OPQ,其中=l;

          方案二 如圖2,圍成三角形養(yǎng)殖區(qū)OCD,其中CD=l;

          (1)求方案一中養(yǎng)殖區(qū)的面積S1 ;

          (2)求證:方案二中養(yǎng)殖區(qū)的最大面積S2

          (3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: 的右焦點為F,不垂直x軸且不過F點的直線l與橢圓C相交于A,B兩點.
          (Ⅰ)若直線l經(jīng)過點P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
          (Ⅱ)如果FA⊥FB,原點到直線l的距離為d,求d的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .
          (1)討論 的單調(diào)性;
          (2)當 時,證明: 對于任意的 成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實數(shù)a的取值范圍為(
          A.(﹣∞,4)
          B.(4,+∞)
          C.(﹣∞,2)
          D.(2,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知三棱柱 ,側(cè)面 .
          (Ⅰ)若 分別是 的中點,求證:
          (Ⅱ)若三棱柱 的各棱長均為2,側(cè)棱 與底面 所成的角為 ,問在線段 上是否存在一點 ,使得平面 ?若存在,求 的比值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)工會利用“健步行” 開展健步走積分獎勵活動.會員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統(tǒng)中隨機抽取了 1000名會員,統(tǒng)計了當天他們的步數(shù),并將樣本數(shù)據(jù)分為,九組,整理得到如圖頻率分布直方圖:

          (1)求當天這1000名會員中步數(shù)少于11千步的人數(shù);

          (2)從當天步數(shù)在的會員中按分層抽樣的方式抽取6人,再從這6人中隨機抽取2人,求這2人積分之和不少于200分的概率;

          (3)寫出該組數(shù)據(jù)的中位數(shù)(只寫結(jié)果).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)的內(nèi)角所對的邊分別是,且的等差中項.

          (Ⅰ)求角;

          (Ⅱ)設(shè),求周長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 ,設(shè)命題 :指數(shù)函數(shù) 上單調(diào)遞增.命題 :函數(shù) 的定義域為 .若“ ”為假,“ ”為真,求 的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案