日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)

          已知函數(shù)的圖象在上連續(xù)不斷,定義:

          其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.若存在最小正整數(shù),使得對(duì)任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.

          (Ⅰ)若,,試寫出,的表達(dá)式;

          (Ⅱ)已知函數(shù),,試判斷是否為上的“階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的;如果不是,請(qǐng)說明理由;

          (Ⅲ)已知,函數(shù)上的2階收縮函數(shù),求的取值范圍.

           

          【答案】

          (1)(2)(3)

          【解析】(Ⅰ)由題意可得:

              ,                                                              ………………………1分

             .                                                                     ………………………2分

          (Ⅱ),                                                                  ………………………3分

            ,                                                                   ………………………4分

          ,                                                      ………………………5分

          當(dāng)時(shí),,;

          當(dāng)時(shí),;

          當(dāng)時(shí),.

          綜上所述,                                                                                  ………………………6分

          即存在,使得上的4階收縮函數(shù).                                  ………………………7分

          (Ⅲ),令.                                                       

          函數(shù)的變化情況如下:

           

          ,解得或3.                                                                  ………………………8分

          。時(shí),上單調(diào)遞增,因此,,.

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052017314546872829/SYS201205201734225781929791_DA.files/image033.png">是上的2階收縮函數(shù),

          所以,①對(duì)恒成立;

          ②存在,使得成立.                    ………………………9分

          ①即:對(duì)恒成立,

          ,解得:,

          要使對(duì)恒成立,需且只需.               .………………………10分

          ②即:存在,使得成立.

          得:

          所以,需且只需.

          綜合①②可得:.                                                               .………………………11分

          ⅱ)當(dāng)時(shí),顯然有,由于上單調(diào)遞增,根據(jù)定義可得:

          ,,

          可得 ,                                 

          此時(shí),不成立.                                                      .………………………13分

          綜合ⅰ)ⅱ)可得:.                 

          注:在ⅱ)中只要取區(qū)間(1,2)內(nèi)的一個(gè)數(shù)來構(gòu)造反例均可,這里用只是因?yàn)楹?jiǎn)單而已.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
          3
          sin2x+2sin(
          π
          4
          +x)cos(
          π
          4
          +x)

          (I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
          (II)當(dāng)x∈[0,
          π
          2
          ]  時(shí),求函數(shù)f(x)
          的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

          (本小題滿分14分)
          已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
          (1)證明:數(shù)列}是等比數(shù)列;
          (2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
          (3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

           (本小題滿分14分)

          某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

          (Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

          (Ⅱ)求該商品第7天的利潤(rùn);

          (Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

          ⑴ 求,滿足的關(guān)系式;

          ⑵ 若上恒成立,求的取值范圍;

          ⑶ 證明:

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案