日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x)和g(x),設(shè)α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,則稱f(x)與g(x)互為“零點關(guān)聯(lián)函數(shù)”.若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,則實數(shù)a的取值范圍為( )
          A.
          B.
          C.[2,3]
          D.[2,4]
          【答案】分析:先得出函數(shù)f(x)=ex-1+x-2的零點為x=1.再設(shè)g(x)=x2-ax-a+3的零點為β,根據(jù)函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,及新定義的零點關(guān)聯(lián)函數(shù),有|1-β|≤1,從而得出g(x)=x2-ax-a+3的零點所在的范圍,最后利用數(shù)形結(jié)合法求解即可.
          解答:解:函數(shù)f(x)=ex-1+x-2的零點為x=1.
          設(shè)g(x)=x2-ax-a+3的零點為β,
          若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,
          根據(jù)零點關(guān)聯(lián)函數(shù),則|1-β|≤1,
          ∴0≤β≤2,如圖.
          由于g(x)=x2-ax-a+3必過點A(-1,4),
          故要使其零點在區(qū)間[0,2]上,則
          ,即
          解得2≤a≤3,
          故選C.
          點評:本題主要考查了函數(shù)的零點,考查了新定義,主要采用了轉(zhuǎn)化為判斷函數(shù)的圖象的零點的取值范圍問題,解題中注意體會數(shù)形結(jié)合思想與轉(zhuǎn)化思想在解題中的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
          (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
          (Ⅱ)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x)和g(x),設(shè)α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,則稱f(x)與g(x)互為“零點關(guān)聯(lián)函數(shù)”.若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,則實數(shù)a的取值范圍為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
          (1)當(dāng)a=1時,求函數(shù)h(x)的極值;
          (2)若函數(shù)h(x)有兩個極值點,求實數(shù)a的取值范圍;
          (3)定義:對于函數(shù)F(x)和G(x),若存在直線?:y=kx+b,使得對于函數(shù)F(x)和G(x)各自定義域內(nèi)的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,則稱直線?:y=kx+b為函數(shù)F(x)和G(x)的“隔離直線”.則當(dāng)a=1時,函數(shù)f(x)和g(x)是否存在“隔離直線”.若存在,求出所有的“隔離直線”;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線
          y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
          (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
          (Ⅱ)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aex,g(x)=lnx-lna其中a為常數(shù),e=2.718K,函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點處的切線分別為l1,l2,且l1∥l2
          (Ⅰ)求常數(shù)a的值及l(fā)1,l2的方程;
          (Ⅱ)求證:對于函數(shù)f(x)和g(x)公共定義域內(nèi)的任意實數(shù)x,有|f(x)-g(x)|>2;
          (Ⅲ)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案