已知橢圓的右焦點(diǎn)為F2(1,0),點(diǎn)
在橢圓上.
(1)求橢圓方程;
(2)點(diǎn)在圓
上,M在第一象限,過M作圓
的切線交橢圓于P、Q兩點(diǎn),問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
(1);(2)|F2P|+|F2Q|+|PQ|是定值,等于4.
解析試題分析:(1)右焦點(diǎn)為,左焦點(diǎn)為
,點(diǎn)
在橢圓上,由橢圓的定義可得
,再由
可得
,從而得橢圓的方程. (2)由于PQ與圓切于點(diǎn)M,故用切線長(zhǎng)公式求出PM、MQ,二者相加求得PQ.求
,可用兩點(diǎn)間的距離公式,將它們相加,若是一個(gè)與點(diǎn)
的坐標(biāo)無關(guān)的常數(shù),則是一個(gè)定值;否則,則不是定值.
試題解析:(1)右焦點(diǎn)為
,
左焦點(diǎn)為,點(diǎn)
在橢圓上
,
所以橢圓方程為 5分
(2)設(shè),
8分
連接OM,OP,由相切條件知: 11分
同理可求
所以為定值。 13分
考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線;3、圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓短軸的一個(gè)端點(diǎn)為
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線交橢圓
于
、
兩點(diǎn),若
.求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓M:=1(a>
)的右焦點(diǎn)為F1,直線l:x=
與x軸交于點(diǎn)A,若
1=2
(其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個(gè)端點(diǎn)),求·
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,且經(jīng)過點(diǎn)
. 過它的兩個(gè)焦點(diǎn)
,
分別作直線
與
,
交橢圓于A、B兩點(diǎn),
交橢圓于C、D兩點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線l:x-y+
=0與以原點(diǎn)為圓心, 以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△的兩個(gè)頂點(diǎn)
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(1)求頂點(diǎn)的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(2)當(dāng)時(shí),過點(diǎn)
的直線
交曲線
于
兩點(diǎn),設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
不重合), 試問:直線
與
軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn)
,而且與橢圓相交于
兩點(diǎn),
為線段
的中點(diǎn).
(1)問:直線與
能否垂直?若能,求
之間滿足的關(guān)系式;若不能,說明理由;
(2)已知為
的中點(diǎn),且
點(diǎn)在橢圓上.若
,求
之間滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
,直線
交橢圓
于
兩點(diǎn).
(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)及長(zhǎng)軸長(zhǎng);
(Ⅱ)求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離心率的橢圓
一個(gè)焦點(diǎn)為
.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓
于
兩點(diǎn),且
,求直線
方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com