①0,1是f(x)=0的兩個(gè)零點(diǎn);②f(x)的最小值為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn=λf(n)(λ≠0,n∈N*),求數(shù)列{an}的前n項(xiàng)和Sn;
(3)在(2)的條件下,當(dāng)λ=時(shí),若5f(an)是bn與an的等差中項(xiàng),試問數(shù)列{bn}中第幾項(xiàng)的值最?并求出這個(gè)最小值.
解:(1)由題意知:
解得故f(x)=
x2
x.
(2)∵Tn=a1a2…an=,當(dāng)n≥2時(shí),Tn-1=a1·a2·…·an-1=
,
∴an==λn-1(n≥2).
又a1=T1=1滿足上式,∴an=λn-1(n∈N*).
當(dāng)λ=1時(shí),Sn=n,當(dāng)λ≠1且λ≠0時(shí),數(shù)列{an}是等比數(shù)列,∴Sn=.
故數(shù)列{an}的前n項(xiàng)和Sn=
(3)若5f(an)是bn與an的等差中項(xiàng),則2×5f(an)=bn+an,從而10(an2
an)=bn+an,
得bn=5an2-6an=5(an)2
.
∵an=()n-1(n∈N*)是關(guān)于n的減函數(shù),
∴當(dāng)an≥,即n≤3(n∈N*)時(shí),bn隨n的增大而減小,此時(shí)最小值為b3;
當(dāng)an<,即n≥4(n∈N*)時(shí),bn隨n的增大而增大,此時(shí)最小值為b4.
又|a3|<|a4
|,∴b3<b4,即數(shù)列{bn}中b3最小,
且b3=5[()2]2-6(
)2=
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
x |
1 |
10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
bx-1 | a2x+2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
-x2-x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
bx-1 | a2x+2b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com