日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為2+2.記動點C的軌跡為曲線W.

          (Ⅰ)求W的方程;

          (Ⅱ)經(jīng)過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點PQ,

          k的取值范圍;

          (Ⅲ)已知點M,0),N(0, 1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,請說明理由.

          (Ⅰ)

          (Ⅱ)

          (Ⅲ)見解析


          解析:

           (Ⅰ) 設(shè)Cx, y),

          , ,

          ,

          ∴ 由定義知,動點C的軌跡是以A、B為焦點,長軸長為2的橢圓除去與x軸的兩個交點.

          .  ∴ .

          W:   . …………………………………………… 2分

          (Ⅱ) 設(shè)直線l的方程為,代入橢圓方程,得.

               整理,得.         ①………………………… 5分

               因為直線l與橢圓有兩個不同的交點PQ等價于

               ,解得.

          ∴ 滿足條件的k的取值范圍為 ………… 7分

          (Ⅲ)設(shè)Px1,y1),Q(x2,y2),則=(x1+x2,y1+y2),

               由①得.                 ②

               又                ③

               因為,, 所以.……………………… 11分

               所以共線等價于.

               將②③代入上式,解得.

               所以不存在常數(shù)k,使得向量共線.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個交點到橢圓兩焦點的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標(biāo)是
          3
          5
          ,點B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案