【題目】平行四邊形所在的平面與直角梯形
所在的平面垂直,
,
,且
,
,
,
為
的中點(diǎn).
(1)求證:平面
;
(2)求證:;
(3)若直線上存在點(diǎn)
,使得
,
所成角的余弦值為
,求
與平面
所成角的大小.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
(1)取的中點(diǎn)
或取
中點(diǎn)
,利用證平行四邊形的方法再證明
平面
即可.
(2)根據(jù)勾股定理與余弦定理證明,再根據(jù)面面垂直的性質(zhì)得出
平面
即可證明
.
(3) 以、
、
所在直線為
、
、
軸建立空間直角坐標(biāo)系
.
設(shè),再利用空間向量求解關(guān)于線面角的問題即可.
(1)解法1:取的中點(diǎn)
,連結(jié)
,
,
,
在直角梯形中,
,
,
所以四邊形為平行四邊形,
所以,
在中
,
,
所以,
又因?yàn)?/span>,
所以平面平面
,
又平面
,
所以平面
.
解法2:取中點(diǎn)
,連結(jié)
,
,
在中,
,
,
所以,且
,
又,
,
所以,
,
所以四邊形為平行四邊形,
所以,
因?yàn)?/span>平面
,
平面
,
所以平面
.
(2)在中
,
,
,
所以,
所以,
所以,
又平面平面
,平面
平面
,
平面
,
所以平面
,
因?yàn)?/span>平面
,
所以.
(3)由(1)(2)以為原點(diǎn),以
、
、
所在直線為
、
、
軸建立空間直角坐標(biāo)系
.
所以,
,
,
,
,
所以,
所以,
,
,
設(shè),
所以,
所以,
所以,
所以,
所以,
設(shè)平面的法向量為
,
所以,
所以令,則
,
如與平面
成的角為
,
所以.
所以,即
與面
成的角為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
.已知函數(shù)
,
.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和
的圖象在公共點(diǎn)(x0,y0)處有相同的切線,
(i)求證:在
處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間
上恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,正確的命題有________(填寫正確的序號)
①若,則
的最小值是6;
②如果不等式的解集是
,那么
恒成立;
③設(shè)x,,且
,則
的最小值是
;
④對于任意,
恒成立,則t的取值范圍是
;
⑤“”是“復(fù)數(shù)
(
)是純虛數(shù)”的必要非充分條件;
⑥若,
,
,則必有
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,
底面
,
,
,且
,
. 點(diǎn)E在棱AB上,平面
與棱
相交于點(diǎn)F.
(Ⅰ)求證:∥平面
;
(Ⅱ)求證:平面
;
(Ⅲ)寫出三棱錐體積的取值范圍. (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過多年的運(yùn)作,“雙十一”搶購活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2018年“雙十一”網(wǎng)購狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費(fèi),對網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量p萬件與促銷費(fèi)用x萬元滿足(其中
,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本
萬元(不含促銷費(fèi)用),每一件產(chǎn)品的銷售價(jià)格定為
元,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費(fèi)用x萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?并求出最大利潤的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解某產(chǎn)品的銷售情況,選擇某個(gè)電商平臺(tái)對該產(chǎn)品銷售情況作調(diào)查.統(tǒng)計(jì)了一年內(nèi)的月銷售數(shù)量(單位:萬件),得到該電商平臺(tái)月銷售數(shù)量的莖葉圖.
(1)求該電商平臺(tái)在這一年內(nèi)月銷售該產(chǎn)品數(shù)量的中位數(shù)和平均數(shù);
(2)該企業(yè)與電商簽訂銷售合同時(shí)規(guī)定:如果電商平臺(tái)當(dāng)月的銷售件數(shù)不低于40萬件,當(dāng)月獎(jiǎng)勵(lì)該電商平臺(tái)10萬元;大于等于30萬件且小于40萬件,當(dāng)月獎(jiǎng)勵(lì)該電商平臺(tái)5萬元;當(dāng)月低于30萬件沒有獎(jiǎng)勵(lì),用該樣本估計(jì)總體,從電商平臺(tái)一個(gè)年度內(nèi)任取兩個(gè)月,記這兩個(gè)月企業(yè)發(fā)給電商平臺(tái)的獎(jiǎng)金為萬元,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)為
,
,上、下頂點(diǎn)為
,
,記四邊形
的內(nèi)切圓為
.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線
交橢圓
于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費(fèi)和年銷售量
(
=1,2,···,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
=
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(ⅰ)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)x為何值時(shí),年利率的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù),
,……,
,其回歸線
的斜率和截距的最小二乘估計(jì)分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙、丙三個(gè)人組成的團(tuán)隊(duì)參加某項(xiàng)闖關(guān)游戲,第一關(guān)解密碼鎖,3個(gè)人依次進(jìn)行,每人必須在1分鐘內(nèi)完成,否則派下一個(gè)人.3個(gè)人中只要有一人能解開密碼鎖,則該團(tuán)隊(duì)進(jìn)入下一關(guān),否則淘汰出局.根據(jù)以往100次的測試,分別獲得甲、乙解開密碼鎖所需時(shí)間的頻率分布直方圖.
(1)若甲解開密碼鎖所需時(shí)間的中位數(shù)為47,求、
的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;
(2)若以解開密碼鎖所需時(shí)間位于各區(qū)間的頻率代替解開密碼鎖所需時(shí)間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨(dú)立.
①按乙丙甲的先后順序和按丙乙甲的先后順序哪一種可使派出人員數(shù)目的數(shù)學(xué)期望更小.
②試猜想:該團(tuán)隊(duì)以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達(dá)到最小,不需要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com