日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知C1的極坐標(biāo)方程為,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.
          【答案】分析:先將曲線C1的化成直角坐標(biāo)方程,曲線C2的普通方程和直線OP的直角坐標(biāo)方程,直線OP與曲線C2的交點(diǎn)橫坐標(biāo),最后利用定積分的幾何意義求出直線OP與曲線C2所圍成的封閉圖形的面積.
          解答:解:曲線C1的直角坐標(biāo)方程為,(2分)
          與x軸的交點(diǎn)為,(3分)
          消去參數(shù)t得到曲線C2的普通方程為y=2-x2;
          直線OP:y=x,(6分)
          直線OP與曲線C2的交點(diǎn)橫坐標(biāo)為x1=-2,x2=1,(8分)
          則直線OP與曲線C2所圍成的封閉圖形的
          面積為.(10分)
          點(diǎn)評:本小題主要考查簡單曲線的極坐標(biāo)方程、拋物線的參數(shù)方程、定積分在求面積中的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知C1的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=1
          ,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
          x=
          t
          -
          1
          t
          y=4-(t+
          1
          t
          )
          (t為參數(shù),且t>0),P為M,N的中點(diǎn).
          (1)將C1,C2化為普通方程;
          (2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知C1的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=1
          ,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
          x=
          t
          -
          1
          t
          y=4-(t+
          1
          t
          )
          (t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知C1的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=1
          ,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
          x=
          t
          -
          1
          t
          y=4-(t+
          1
          t
          )
          (t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知C1的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=1
          ,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
          x=
          t
          -
          1
          t
          y=4-(t+
          1
          t
          )
          (t為參數(shù),且t>0),P為M,N的中點(diǎn).
          (1)將C1,C2化為普通方程;
          (2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長.

          查看答案和解析>>

          同步練習(xí)冊答案