日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
          ;
          ②∠BAC=60°;
          ③三棱錐D-ABC是正三棱錐;
          ④平面ADC的法向量和平面ABC的法向量互相垂直.
          其中正確的是( )

          A.①②
          B.②③
          C.③④
          D.①④
          【答案】分析:①由折疊的原理,可知BD⊥平面ADC,可推知BD⊥AC,數(shù)量積為零,②因?yàn)檎郫B后AB=AC=BC,三角形為等邊三角形,所以∠BAC=60°;③又因?yàn)镈A=DB=DC,根據(jù)正三棱錐的定義判斷.④平面ADC和平面ABC不垂直.
          解答:解:BD⊥平面ADC,⇒BD⊥AC,①錯(cuò);
          AB=AC=BC,②對(duì);
          DA=DB=DC,結(jié)合②,③對(duì)④錯(cuò).
          故選B.
          點(diǎn)評(píng):本題是一道折疊題,主要考查折疊前后線線,線面,面面關(guān)系的不變和改變,解題時(shí)要前后對(duì)應(yīng),仔細(xì)論證,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
          BD
          AC
          ≠0

          ②∠BAC=60°;
          ③三棱錐D-ABC是正三棱錐;
          ④平面ADC的法向量和平面ABC的法向量互相垂直.
          其中正確的是( 。
          A、①②B、②③C、③④D、①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD與△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
          BD
          AC
          ≠0
          ;
          ②∠BAC=60°;
          ③三棱錐D-ABC是正三棱錐;
          ④平面ADC的法向量和平面ABC的法向量互相垂直.
          其中正確結(jié)論的序號(hào)是
          ②③
          ②③
          .(請(qǐng)把正確結(jié)論的序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:

                 ①

                 ②∠BAC=60°;

                 ③三棱錐D—ABC是正三棱錐;

                 ④平面ADC的法向量和平面ABC的法向量互相垂直.

                 其中正確的是                                                    (    )

                 A.①②          B.②③              C.③④            D.①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆重慶市高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:填空題

          如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:

          ;

          ②∠BAC=60°;

          ③三棱錐D—ABC是正三棱錐;

          ④平面ADC的法向量和平面ABC的法向量互相垂直.

          其中正確的是________(填上正確答案的序號(hào))

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧省開原市高二第三次月考理科數(shù)學(xué) 題型:選擇題

          如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,將ΔABD和ΔACD折起,使折起后的ΔABC成等邊三角形,則二面角C-AB-D的余弦值等于             (    )

          A.            B.      C.              D.

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案