【題目】2015年8月12日天津發(fā)生;分卮蟊ㄊ鹿剩斐芍卮笕藛T和經(jīng)濟損失.某港口組織消防人員對該港口的公司的集裝箱進行安全抽檢,已知消防安全等級共分為四個等級(一級為優(yōu),二級為良,三級為中等,四級為差),該港口消防安全等級的統(tǒng)計結果如下表所示:
現(xiàn)從該港口隨機抽取了家公司,其中消防安全等級為三級的恰有20家.
(Ⅰ)求的值;
(Ⅱ)按消防安全等級利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級為一級和四級的公司后,再從剩余公司中任意抽取2家,求抽取的這2家公司的消防安全等級都是二級的概率.
【答案】(I),
;(II)
.
【解析】
試題(1)由頻率分布表中各小組頻率和為1,求出的值;由現(xiàn)從該港口隨機抽取了
家公司,其中消防安全等級為三級的恰有20家,可求
的值;
(Ⅱ)根據(jù)分層抽樣,求出消防安全等級為一級的有3家,二級的有4家,三級的有2家,四級的有1家.,再一一列舉出所有得基本事件,找到抽取的這2家公司的消防安全等級都是二級的基本事件數(shù),根據(jù)概率公式計算即可.
試題解析:(1)由已知可得;,解得:
.所以
.
(2)由(1)知,利用分層抽樣的方法從中抽取10家公司,則消防安全等級為一級的有3家,二級的有4家,三級的有2家,四級的有1家.
記消防安全等級為二級的4家公司分別為A,B,C,D,三級的2家公司分別記為a,b,則從中抽取2家公司,不同的結果為…共15種,記“抽取的2家公司的消防安全等級都是二級”為事件M,則事件M包含的結果有:…共6種,所以.
科目:高中數(shù)學 來源: 題型:
【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調(diào)查,其中女生有55名.下面是根據(jù)調(diào)查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:
將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有10名女生.
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有
的把握認為達到體育健康
類學生與性別有關?
非體育健康 | 體育健康 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有2名女生,若從體育健康
類學生中任意選取2人,求至少有1名女生的概率.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為
為參數(shù))。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,
(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標
(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
上為增函數(shù),求
的取值范圍;
(2)若函數(shù)有兩個不同的極值點,記作
,
,且
,證明:
(
為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.
(I)將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.
(II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關?
非手機迷 | 手機迷 | 合計 | |
男 | |||
女 | |||
合計 |
附:隨機變量(其中
為樣本總量).
參考數(shù)據(jù) | 0.15 | 0.10 | 0.05 | 0.025 | |
span>2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有名工人,已知這
名工人去年完成的產(chǎn)品數(shù)都在區(qū)間
(單位:萬件)內(nèi),其中每年完成
萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成
組,第
組、第
組、第
組、第
組、第
組對應的區(qū)間分別為
,
,
,
,
,并繪制出如圖所示的頻率分布直方圖.
(1)求的值,并求去年優(yōu)秀員工人數(shù);
(2)選取合適的抽樣方法從這名工人中抽取容量為
的樣本,求這
組分別應抽取的人數(shù);
(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機選取
名傳授經(jīng)驗,求選取的
名工人在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)滿足以下三個條件:①對于任意的
,都有
;②對于任意的
都有
③函數(shù)
的圖象關于y軸對稱,則下列結論中正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)絡平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:
學時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計男性客戶購買該課程學時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結果保留小數(shù)點后兩位);
(2)從這100位客戶中,對購買該課程學時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學時數(shù)都不低于15的概率.
(3)將購買該課程達到25學時及以上者視為“十分愛好該課程者”,25學時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關?
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | |||
女性 | |||
合計 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到直線
的距離比到點
的距離大
(1)求動點的軌跡
的方程;
(2)為
上兩點,
為坐標原點,
,過
分別作
的兩條切線,相交于點
,求
面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com